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ESE532: 
System-on-a-Chip Architecture 

Day 5:  January 30, 2017 
Dataflow Process Model 
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Today 
Dataflow Process Model 
•  Motivation 
•  Issues 
•  Abstraction 
•  Recommended Approach 

Message 

•  Parallelism can be natural 
•  Discipline to avoid common pitfalls 

– Maintain determinism 
•  …as much as possible 

•  Identify rich potential parallelism 
•  Abstract out implementation details 

– Admit to many implementations 
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Process 
•  Abstraction of a processor 
•  Looks like each process is running on a 

separate processor 
•  Has own state, including 

– Program Counter (PC) 
– Memory 
–  Input/output 

•  May not actually run on processor 
– Could be specialized hardware block 
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Thread 

•  Has a separate locus of control (PC) 
•  May share memory 

– Run in common address space with other 
threads 

•  For today – no shared memory 
–  (technically no threads) 
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FIFO 
•  First In First Out 
•  Delivers inputs to outputs in order 
•  Data presence 

– Consumer knows when data available 
•  Back Pressure 

– Producer knows when at capacity 
•  Typically stalls 

•  Decouples producer and consumer 
– Hardware: maybe even different clocks 
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Preclass 1 

•  Value of separate processes? 
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Preclass 2 
•  Compute Data 

Parallel GCD 
•  Why challenge for 

SIMD 
implementation? 

•  What benefit get 
from multiple 
processes 
(processors) running 
Data Parallel GCD? 

•  while(a!=b) 
–  a=max(a,b)-min(a,b) 
–  a=min(a,b) 

•  return(a); 
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Preclass 3 

•  How long to process each input? 
•  Correlation in delays? 
•  What benefit from FIFO and processes? 
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Process 

•  Processes allow expression of 
independent control 

•  Convenient for things that advance 
independently 

•  Performance optimization resource 
utilization 
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Issues 

•  Communication – how move data 
between processes? 

•  Synchronization – how define how 
they advance relative to each other? 

•  Determinism – for the same inputs, do 
we get the same outputs? 
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Today’s Stand 

•  Communication – FIFO-like channels 
•  Synchronization – dataflow with FIFOs 
•  Determinism – how to achieve 

– …until you must give it up. 
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Dataflow Process Model 

Operation/Operator 

•  Operation – logic computation to be 
performed 
– A process that communicates through 

dataflow inputs and outputs 
•  Operator – physical block that performs 

an Operation 
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Dataflow / Control Flow 

Dataflow 
•  Program is a graph 

of operations 
•  Operation consumes 

tokens and 
produces tokens 

•  All operations run 
concurrently 
–  All processes 

Control flow (e.g. C) 
•  Program is a 

sequence of 
operations 

•  Operation reads 
inputs and writes 
outputs into 
common store 

•  One operation runs 
at a time  
–  defines successor 
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Token 

•  Data value with presence indication 
– May be conceptual 

•  Only exist in high-level model 
•  Not kept around at runtime 

– Or may be physically represented 
•  One bit represents presence/absence of data 

Penn ESE532 Spring 2017 -- DeHon 
17 

Stream 

•  Logical abstraction of a persistent point-
to-point communication link between 
operators 
– Has a (single) source and sink 
– Carries data presence / flow control 
– Provides in-order (FIFO) delivery of data 

from source to sink 

stream 
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Streams 

•  Captures communications structure 
– Explicit producer!consumer link up 

•  Abstract communications 
– Physical resources or implementation 
– Delay from source to sink 
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Dataflow Process Network 

•  Collection of Operators 
•  Connected by Streams 
•  Communicating with Data Tokens 
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Dataflow Abstracts Timing 

•  Doesn’t say  
–  on which cycle calculation occurs 

•  Does say 
–  What order operations occur in 
–  How data interacts 

•  i.e. which inputs get mixed together 

•  Permits 
–  Scheduling on different # and types of resources 
–  Operators with variable delay [examples?] 
–  Variable delay in interconnect [examples?] 

Operations 
•  Can be implemented on different 

operators with different characteristics 
– Small or large processor 
– Hardware unit 
– Different levels of internal  

•  Data-level parallelism 
•  Instruction-level parallelism 

•  May itself be described as 
– Dataflow process network, sequential, 

hardware register transfer language 
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Examples 
•  Operators with Variable Delay 

– Cached memory or computation 
– Shift-and-add multiply 
–  Iterative divide or square-root 

•  Variable delay interconnect 
– Shared bus 
– Distance changes  

•  Wireless, longer/shorter cables 

– Computation placed on different cores 
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Clock Independent Semantics 

Interconnect 
Takes n-clocks 
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Semantics 

•  Need to implement semantics 
–  i.e. get same result as if computed as 

indicated 
•  But can implement any way we want 

– That preserves the semantics 
– Exploit freedom of implementation 
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Dataflow Variants 
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Synchronous Dataflow (SDF) 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
– When full set of inputs are available 

•  Can produce output 

– Can fire any (all) operations with inputs 
available at any point in time 
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Synchronous Dataflow 

+ + 
×k 

×k ×k 

×k 
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SDF: Execution Semantics 

while (true) 
Pick up any operator 
If operation has full set of inputs 

Compute operation 
Produce outputs 
Send outputs to consumers 
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Multirate Synchronous Dataflow 

•  Rates can be different 
– Allow lower frequency operations 
– Communicates rates to tools 

•  Use in scheduling, provisioning 

– Rates must be constant 
•  Data independent 

decimate 
2 1 
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SDF 
•  Can validate flows to check legal 

–  Like KCL ! token flow must be conserved 
–  No node should 

•  be starved of tokens 
•  Collect tokens 

•  Schedule operations onto processing elements 
–  Provisioning of operators 

•  Provide real-time guarantees 
•  Compute required depth of all buffers 
•  Model restrictions ! analysis power 
•  Simulink is SDF model 
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SDF: good/bad graphs 
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Dynamic Rates? 

•  When might static rates be limiting? 
(prevent useful optimizations?) 
– Compress/decompress 

•  Lossless 
•  Even Run-Length-Encoding 

– Filtering 
•  Discard all packets from spamRus 

– Anything data dependent 

Penn ESE532 Spring 2017 -- DeHon 
34 

Data Dependence 

•  Add Two Operators 
– Switch 
– Select 
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Switch 
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Filtering Example 

spamRus? 

switch 

discard 
dup 
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Select 
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Constructing  
If-Then-Else 

In-Order Merge 

•  Task: Merge to ordered streams in 
order onto a single output stream 
– Key step in merge sort 

•  Use to illustrate switch/select 
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Idiom to Selectively  
Consume Input 

•  Hold onto current 
head on loop 
– Shown left here 
– With T-side control 
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In-Order Merge 
•  Use one for each of the two input streams 
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In-Order Merge 

•  Perform Comparison 
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In-Order Merge 
•  Act on result of comparison 
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Looping 

•  for (i=0;i<Limit;i++) 

Universal 

•  Once we add switch and select, 
the dataflow model is as powerful as 
any other 
– E.g. can do anything we could do in C 
–  “Turing Complete” in formal CS terms 
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Dynamic Challenges 
•  In general, cannot say 

–  If a graph is well formed 
• Will not deadlock 

– How many tokens may have to buffer in stream 
•  Will not bufferlock  

– deadlock on finite buffer size 
– When not deadlock on unbounded buffer 

– Right proportion of operators for computation 
•  More powerful model ! weaker analysis 

– Larger burden to guarantee correctness 

Deterministic 

•  As described so far, 
– Timing-independent 

•  Always gets same answer 
– Regardless of operator and stream delays 

•  Execution time can be data and 
implementation dependent 
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No Peaking 

•  Key to determinism: behavior doesn’t 
depend on timing 
– Cannot ask if a token is present 

•  If (not_empty(in)) 
– Out.put(3); 

•  Else 
– Out.put(2); 
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When peaking necessary? 

•  What are cases where we need the 
ability to ask if a data item is present? 
– Preclass 1 
– User Input 
– Server 
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When Peak Optimization? 

•  What are cases where asking about 
data presence might allow performance 
optimization? 
– Process data as soon as arrives 
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Peaking 

•  Removed model restriction (no peaking) 
•  Gained expressive power 

– Can grab data as shows up 
•  Weaken our guarantees 

– Possible to get non-deterministic behavior 
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Data-Dependent Parallelism 

•  Sequential code 
– With malloc(), new() 
– Size of data determines memory footprint, 

size of structures 
– Amount of computation performed 

•  Here process graph may want to match 
data structure 
– Add a process spawn 
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Data-Dependent Parallelism 

•  Where might benefit having data-
dependent parallelism? 
– Searching variable number of targets 
– Simulation  
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Data-Independent Parallelism 

•  What happens if we cannot spawn? 

•  Why likely to be less important for a 
particular SoC target? 
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Approach 
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Approach (1) 
•  Identify natural parallelism 
•  Convert to streaming flow 

–  Initially leave operators software 
– Focus on correctness 

•  Identify flow rates, computation per 
operator, parallelism needed 

•  Refine operators 
– Decompose further parallelism? 
– E.g. SIMD changes making now 
– model potential hardware 
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Approach (2) 

•  Refine coordination as necessary for 
implementation 

•  Map operators and streams to 
resources 
– Provision hardware 
– Scheduling: Map operations to operators 
– Memories, interconnect 

•  Profile and tune 
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Big Ideas 
•  Capture gross parallel structure with 

Process Network 
•  Use dataflow synchronization for 

determinism 
•  Abstract out timing of implementations 

– Give freedom to optimize implementation 
for performance  

•  Minimally use non-determinism as 
necessary 
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Admin 
•  Reading for Day 6 on web 
•  HW3 due Friday 
•  Expanded feedback incl. HW2 
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