
1

Penn ESE532 Spring 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 5: January 30, 2017
Dataflow Process Model

Penn ESE532 Spring 2017 -- DeHon
2

Today
Dataflow Process Model
•  Motivation
•  Issues
•  Abstraction
•  Recommended Approach

Message

•  Parallelism can be natural
•  Discipline to avoid common pitfalls

– Maintain determinism
•  …as much as possible

•  Identify rich potential parallelism
•  Abstract out implementation details

– Admit to many implementations

Penn ESE532 Spring 2017 -- DeHon
3

Process
•  Abstraction of a processor
•  Looks like each process is running on a

separate processor
•  Has own state, including

– Program Counter (PC)
– Memory
–  Input/output

•  May not actually run on processor
– Could be specialized hardware block

Penn ESE532 Spring 2017 -- DeHon
4

Thread

•  Has a separate locus of control (PC)
•  May share memory

– Run in common address space with other
threads

•  For today – no shared memory
–  (technically no threads)

Penn ESE532 Spring 2017 -- DeHon
5

FIFO
•  First In First Out
•  Delivers inputs to outputs in order
•  Data presence

– Consumer knows when data available
•  Back Pressure

– Producer knows when at capacity
•  Typically stalls

•  Decouples producer and consumer
– Hardware: maybe even different clocks

Penn ESE532 Spring 2017 -- DeHon
6

2

Preclass 1

•  Value of separate processes?

Penn ESE532 Spring 2017 -- DeHon
7

Preclass 2
•  Compute Data

Parallel GCD
•  Why challenge for

SIMD
implementation?

•  What benefit get
from multiple
processes
(processors) running
Data Parallel GCD?

•  while(a!=b)
–  a=max(a,b)-min(a,b)
–  a=min(a,b)

•  return(a);

Penn ESE532 Spring 2017 -- DeHon
8

Preclass 3

•  How long to process each input?
•  Correlation in delays?
•  What benefit from FIFO and processes?

Penn ESE532 Spring 2017 -- DeHon
9

Process

•  Processes allow expression of
independent control

•  Convenient for things that advance
independently

•  Performance optimization resource
utilization

Penn ESE532 Spring 2017 -- DeHon
10

Issues

•  Communication – how move data
between processes?

•  Synchronization – how define how
they advance relative to each other?

•  Determinism – for the same inputs, do
we get the same outputs?

Penn ESE532 Spring 2017 -- DeHon
11

Today’s Stand

•  Communication – FIFO-like channels
•  Synchronization – dataflow with FIFOs
•  Determinism – how to achieve

– …until you must give it up.

Penn ESE532 Spring 2017 -- DeHon
12

3

Penn ESE532 Spring 2017 -- DeHon
13

Dataflow Process Model

Operation/Operator

•  Operation – logic computation to be
performed
– A process that communicates through

dataflow inputs and outputs
•  Operator – physical block that performs

an Operation

Penn ESE532 Spring 2017 -- DeHon
14

Penn ESE532 Spring 2017 -- DeHon
15

Dataflow / Control Flow

Dataflow
•  Program is a graph

of operations
•  Operation consumes

tokens and
produces tokens

•  All operations run
concurrently
–  All processes

Control flow (e.g. C)
•  Program is a

sequence of
operations

•  Operation reads
inputs and writes
outputs into
common store

•  One operation runs
at a time
–  defines successor

Penn ESE532 Spring 2017 -- DeHon
16

Token

•  Data value with presence indication
– May be conceptual

•  Only exist in high-level model
•  Not kept around at runtime

– Or may be physically represented
•  One bit represents presence/absence of data

Penn ESE532 Spring 2017 -- DeHon
17

Stream

•  Logical abstraction of a persistent point-
to-point communication link between
operators
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data

from source to sink

stream

Penn ESE532 Spring 2017 -- DeHon
18

Streams

•  Captures communications structure
– Explicit producer!consumer link up

•  Abstract communications
– Physical resources or implementation
– Delay from source to sink

4

Dataflow Process Network

•  Collection of Operators
•  Connected by Streams
•  Communicating with Data Tokens

Penn ESE532 Spring 2017 -- DeHon
19

Penn ESE532 Spring 2017 -- DeHon
20

Dataflow Abstracts Timing

•  Doesn’t say
–  on which cycle calculation occurs

•  Does say
–  What order operations occur in
–  How data interacts

•  i.e. which inputs get mixed together

•  Permits
–  Scheduling on different # and types of resources
–  Operators with variable delay [examples?]
–  Variable delay in interconnect [examples?]

Operations
•  Can be implemented on different

operators with different characteristics
– Small or large processor
– Hardware unit
– Different levels of internal

•  Data-level parallelism
•  Instruction-level parallelism

•  May itself be described as
– Dataflow process network, sequential,

hardware register transfer language
Penn ESE532 Spring 2017 -- DeHon

21

Examples
•  Operators with Variable Delay

– Cached memory or computation
– Shift-and-add multiply
–  Iterative divide or square-root

•  Variable delay interconnect
– Shared bus
– Distance changes

•  Wireless, longer/shorter cables

– Computation placed on different cores
Penn ESE532 Spring 2017 -- DeHon

22

Penn ESE532 Spring 2017 -- DeHon
23

Clock Independent Semantics

Interconnect
Takes n-clocks

Penn ESE532 Spring 2017 -- DeHon
24

Semantics

•  Need to implement semantics
–  i.e. get same result as if computed as

indicated
•  But can implement any way we want

– That preserves the semantics
– Exploit freedom of implementation

5

Penn ESE532 Spring 2017 -- DeHon
25

Dataflow Variants

Penn ESE532 Spring 2017 -- DeHon
26

Synchronous Dataflow (SDF)

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operations with inputs
available at any point in time

Penn ESE532 Spring 2017 -- DeHon
27

Synchronous Dataflow

+ +
×k

×k ×k

×k

Penn ESE532 Spring 2017 -- DeHon
28

SDF: Execution Semantics

while (true)
Pick up any operator
If operation has full set of inputs

Compute operation
Produce outputs
Send outputs to consumers

Penn ESE532 Spring 2017 -- DeHon
29

Multirate Synchronous Dataflow

•  Rates can be different
– Allow lower frequency operations
– Communicates rates to tools

•  Use in scheduling, provisioning

– Rates must be constant
•  Data independent

decimate
2 1

Penn ESE532 Spring 2017 -- DeHon
30

SDF
•  Can validate flows to check legal

–  Like KCL ! token flow must be conserved
–  No node should

•  be starved of tokens
•  Collect tokens

•  Schedule operations onto processing elements
–  Provisioning of operators

•  Provide real-time guarantees
•  Compute required depth of all buffers
•  Model restrictions ! analysis power
•  Simulink is SDF model

6

Penn ESE532 Spring 2017 -- DeHon
31

SDF: good/bad graphs

1

2

1

1

1

1

1

1

1

1

1

1

Penn ESE532 Spring 2017 -- DeHon
32

SDF: good/bad graphs

1

1

1

2

1

1

1

1

1

2

1

1

1

2

1

2

1

1

Penn ESE532 Spring 2017 -- DeHon
33

Dynamic Rates?

•  When might static rates be limiting?
(prevent useful optimizations?)
– Compress/decompress

•  Lossless
•  Even Run-Length-Encoding

– Filtering
•  Discard all packets from spamRus

– Anything data dependent

Penn ESE532 Spring 2017 -- DeHon
34

Data Dependence

•  Add Two Operators
– Switch
– Select

Penn ESE532 Spring 2017 -- DeHon
35

Switch

Penn ESE532 Spring 2017 -- DeHon
36

Filtering Example

spamRus?

switch

discard
dup

7

Penn ESE532 Spring 2017 -- DeHon
37

Select

Penn ESE532 Spring 2017 -- DeHon
38

Constructing
If-Then-Else

In-Order Merge

•  Task: Merge to ordered streams in
order onto a single output stream
– Key step in merge sort

•  Use to illustrate switch/select

Penn ESE532 Spring 2017 -- DeHon
39

Idiom to Selectively
Consume Input

•  Hold onto current
head on loop
– Shown left here
– With T-side control

Penn ESE532 Spring 2017 -- DeHon
40

In-Order Merge
•  Use one for each of the two input streams

Penn ESE532 Spring 2017 -- DeHon
41

In-Order Merge

•  Perform Comparison

Penn ESE532 Spring 2017 -- DeHon
42

8

In-Order Merge
•  Act on result of comparison

Penn ESE532 Spring 2017 -- DeHon
43

Penn ESE532 Spring 2017 -- DeHon
44

Looping

•  for (i=0;i<Limit;i++)

Universal

•  Once we add switch and select,
the dataflow model is as powerful as
any other
– E.g. can do anything we could do in C
–  “Turing Complete” in formal CS terms

Penn ESE532 Spring 2017 -- DeHon
45

Penn ESE532 Spring 2017 -- DeHon
46

Dynamic Challenges
•  In general, cannot say

–  If a graph is well formed
• Will not deadlock

– How many tokens may have to buffer in stream
•  Will not bufferlock

– deadlock on finite buffer size
– When not deadlock on unbounded buffer

– Right proportion of operators for computation
•  More powerful model ! weaker analysis

– Larger burden to guarantee correctness

Deterministic

•  As described so far,
– Timing-independent

•  Always gets same answer
– Regardless of operator and stream delays

•  Execution time can be data and
implementation dependent

Penn ESE532 Spring 2017 -- DeHon
47

No Peaking

•  Key to determinism: behavior doesn’t
depend on timing
– Cannot ask if a token is present

•  If (not_empty(in))
– Out.put(3);

•  Else
– Out.put(2);

Penn ESE532 Spring 2017 -- DeHon
48

9

When peaking necessary?

•  What are cases where we need the
ability to ask if a data item is present?
– Preclass 1
– User Input
– Server

Penn ESE532 Spring 2017 -- DeHon
49

When Peak Optimization?

•  What are cases where asking about
data presence might allow performance
optimization?
– Process data as soon as arrives

Penn ESE532 Spring 2017 -- DeHon
50

Peaking

•  Removed model restriction (no peaking)
•  Gained expressive power

– Can grab data as shows up
•  Weaken our guarantees

– Possible to get non-deterministic behavior

Penn ESE532 Spring 2017 -- DeHon
51

Data-Dependent Parallelism

•  Sequential code
– With malloc(), new()
– Size of data determines memory footprint,

size of structures
– Amount of computation performed

•  Here process graph may want to match
data structure
– Add a process spawn

Penn ESE532 Spring 2017 -- DeHon
52

Data-Dependent Parallelism

•  Where might benefit having data-
dependent parallelism?
– Searching variable number of targets
– Simulation

Penn ESE532 Spring 2017 -- DeHon
53

Data-Independent Parallelism

•  What happens if we cannot spawn?

•  Why likely to be less important for a
particular SoC target?

Penn ESE532 Spring 2017 -- DeHon
54

10

Approach

Penn ESE532 Spring 2017 -- DeHon
55

Approach (1)
•  Identify natural parallelism
•  Convert to streaming flow

–  Initially leave operators software
– Focus on correctness

•  Identify flow rates, computation per
operator, parallelism needed

•  Refine operators
– Decompose further parallelism?
– E.g. SIMD changes making now
– model potential hardware

Penn ESE532 Spring 2017 -- DeHon
56

Approach (2)

•  Refine coordination as necessary for
implementation

•  Map operators and streams to
resources
– Provision hardware
– Scheduling: Map operations to operators
– Memories, interconnect

•  Profile and tune
Penn ESE532 Spring 2017 -- DeHon

57

Big Ideas
•  Capture gross parallel structure with

Process Network
•  Use dataflow synchronization for

determinism
•  Abstract out timing of implementations

– Give freedom to optimize implementation
for performance

•  Minimally use non-determinism as
necessary

Penn ESE532 Spring 2017 -- DeHon
58

Admin
•  Reading for Day 6 on web
•  HW3 due Friday
•  Expanded feedback incl. HW2

Penn ESE532 Spring 2017 -- DeHon
59

