
1

Penn ESE532 Spring 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 6: February 1, 2017
Process and Threads

Penn ESE532 Spring 2017 -- DeHon
2

Today
Dataflow Process Model
•  Finish Models
•  Aspirational Recommended Approach
Threads
•  Hazards
•  Discipline

Message

•  Abstract the problem agnostic from
implementation

•  Map based on
– Computational demand
– Platform

•  Use restricted patterns to avoid shared-
memory pitfalls

Penn ESE532 Spring 2017 -- DeHon
3

Penn ESE532 Spring 2017 -- DeHon
4

Dataflow Variants

Penn ESE532 Spring 2017 -- DeHon
5

Synchronous Dataflow (SDF)

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operations with inputs
available at any point in time

Penn ESE532 Spring 2017 -- DeHon
6

Dynamic Dataflow

•  (Less) restricted form of dataflow
•  Each operation

– Conditionally consume input based on data value
– Conditionally produce output based on data value
– When full set of inputs are available

•  Can (optionally) produce output

– Can fire any (all) operations with data-specified
necessary inputs available at any point in time

2

No Peaking

•  Key to determinism: behavior doesn’t
depend on timing
– Cannot ask if a token is present

•  If (not_empty(in))
– Out.put(3);

•  Else
– Out.put(2);

Penn ESE532 Spring 2017 -- DeHon
7

When peaking necessary?

•  What are cases where we need the
ability to ask if a data item is present?

Penn ESE532 Spring 2017 -- DeHon
8

When Peak Optimization?

•  What are cases where asking about
data presence might allow performance
optimization?

Penn ESE532 Spring 2017 -- DeHon
9

Peaking

•  Removed model restriction (no peaking)
•  Gained expressive power

– Can grab data as shows up
•  Weaken our guarantees

– Possible to get non-deterministic behavior

Penn ESE532 Spring 2017 -- DeHon
10

Process Network Roundup

Model Deterministic
Result

Deterministic
Timing

Turing
Complete

SDF+fixed-delay
operators

Y Y N

SDF+variable
delay operators

Y N N

DDF no peak Y N Y
DDF w/ peak N N Y

Penn ESE532 Spring 2017 -- DeHon
11

Aspirational
Approach

Penn ESE532 Spring 2017 -- DeHon
12

3

Approach (1)
•  Identify natural parallelism
•  Convert to streaming flow

–  Initially leave operators software
– Focus on correctness

•  Identify flow rates, computation per
operator, parallelism needed

•  Refine operators
– Decompose further parallelism?
– E.g. SIMD changes making hw3
– model potential hardware

Penn ESE532 Spring 2017 -- DeHon
13

Approach (2)

•  Refine coordination as necessary for
implementation

•  Map operators and streams to
resources
– Provision hardware
– Scheduling: Map operations to operators
– Memories, interconnect

•  Profile and tune
Penn ESE532 Spring 2017 -- DeHon

14

Approach
•  Process Network agnostic to operator

implementation
•  Implementation explores

– operator mappings
•  What fixed SoC provides
•  Where might allocate hardware for novel SoC

– Communication mappings
– Memory allocation

•  Isolated memories!communication explicit

Penn ESE532 Spring 2017 -- DeHon
15

Preclass 1a

•  Throughput for 1:1 mapping of
processes to SPs?

•  Possibly we didn’t know throughputs
initially – map and measure

Penn ESE532 Spring 2017 -- DeHon
16

Preclass 1b

•  Refine: better mapping to 3 SPs?
•  Throughput?

Penn ESE532 Spring 2017 -- DeHon
17

Preclass 1c

•  Mapping 1 SIMD and 1 SP?
•  Throughput?

Penn ESE532 Spring 2017 -- DeHon
18

 1/20
(SIMD)

4

Approach
•  Once have base process network

(ideally), we have reduced to working in
this mapping space

•  Spend our time (in this class)
– Enriching and elaborating this mapping

space

Penn ESE532 Spring 2017 -- DeHon
19

Threads

Penn ESE532 Spring 2017 -- DeHon
20

Thread
•  Has a separate locus of control (PC)
•  May share memory

– Run in common address space with other
threads

Now: look at shared memory

Penn ESE532 Spring 2017 -- DeHon
21

Issues

•  Communication – how move data
between processes?

•  Synchronization – how define how
they advance relative to each other?

•  Determinism – for the same inputs, do
we get the same outputs?

Penn ESE532 Spring 2017 -- DeHon
22

Issues

•  Communication – read/write in
common address space

•  Synchronization – get to choose
– Semaphores, locks, barriers, data

presence
•  Determinism – not unless you’re very

careful

Penn ESE532 Spring 2017 -- DeHon
23

Shared Memory

•  Good
– Sharing easy to express
– Data movement implicit

•  Bad
– Easy to introduced unwanted non-

determinism
– Expensive abstraction to support

•  Hardware, energy

– Harder to understand communication
Penn ESE532 Spring 2017 -- DeHon

24

5

What to watch for

•  Thread 1:
–  Do stuff
–  M[123]=12
–  Do more stuff
–  A=M[123]*2

•  Thread 2:
–  Do different stuff
–  M[123]=0
–  Do other stuff

Penn ESE532 Spring 2017 -- DeHon
25

What value does A hold?

Preclass 2a

P1:
•  for (i=0;i<N/2;i++)

 v=f(i);
 h[v]=h[v]+1;

P2:
•  for (i=N/2+1;i<N;i++)

 v=f(i);
 h[v]=h[v]+1;

Penn ESE532 Spring 2017 -- DeHon
26

What can go wrong here?

Preclass 2b

P1:
•  for (i=0;i<N/2;i++)

 v=f(i);
 h[v]=h[v]+1;

P2:
•  for (i=N/2+1;i<N;i++)

 v=f(i);
 h[v]=h[v]+1;

Penn ESE532 Spring 2017 -- DeHon
27

How might we avoid hazard?

Disciplines

Don’t really share
– Exploit actual sharing in limited ways

•  Privatize
– Local memory not really shared
– Server thread to sequentialize access to

shared state
•  Use data presence

– Buffer
– Explicitly – presence variable and check

Penn ESE532 Spring 2017 -- DeHon
28

Disciplines

•  Read-Only sharing OK
•  Barrier

– Force rendezvous at point before continue
– Like a clock edge in a circuit

Penn ESE532 Spring 2017 -- DeHon
29

Expression and
Implementation not 1:1

Examples
•  Pure DPN implemented on shared-

memory processors
– Private memory, implement buffers in SM

•  Single threaded DP with conditionals
–  Implement in multiple threads

•  SDF with many tasks
–  Implement schedule of operations on

single instruction stream
Penn ESE532 Spring 2017 -- DeHon

30

6

SDF in single thread

While(input)
A=Astep(in());
B=Bstep(A);
C=Cstep(B);

Penn ESE532 Spring 2017 -- DeHon
31

Multiple Ways to Decompose

•  Searching for 2 targets strings in a
single document

•  Run on 2 processor
•  How decompose and map?
•  Resource implications?
•  Data access implications?

Penn ESE532 Spring 2017 -- DeHon
32

Approach

•  Identify design space of mappings
– Decomposition, hardware mapping

•  Analyze which meet our platform
restrictions (are most efficient)

•  Experiment as necessary

Penn ESE532 Spring 2017 -- DeHon
33

Big Ideas
•  Abstract the problem agnostic from

implementation
•  Map based on

– Computational demand
– Platform
– Seldom 1:1 ! rich options to explore

•  Use restricted patterns to avoid shared-
memory pitfalls

Penn ESE532 Spring 2017 -- DeHon
34

Admin
•  Reading for Day 7 on web
•  HW3 due Friday

Penn ESE532 Spring 2017 -- DeHon
35

