
1 

Penn ESE532 Spring 2017 -- DeHon 
1 

ESE532: 
System-on-a-Chip Architecture 

Day 6:  February 1, 2017 
Process and Threads 
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Today 
Dataflow Process Model 
•  Finish Models 
•  Aspirational Recommended Approach 
Threads 
•  Hazards 
•  Discipline 

Message 

•  Abstract the problem agnostic from 
implementation 

•  Map based on  
– Computational demand 
– Platform 

•  Use restricted patterns to avoid shared-
memory pitfalls 
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Dataflow Variants 
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Synchronous Dataflow (SDF) 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
– When full set of inputs are available 

•  Can produce output 

– Can fire any (all) operations with inputs 
available at any point in time 
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Dynamic Dataflow 

•  (Less) restricted form of dataflow 
•  Each operation 

– Conditionally consume input based on data value 
– Conditionally produce output based on data value 
– When full set of inputs are available 

•  Can (optionally) produce output 

– Can fire any (all) operations with data-specified 
necessary inputs available at any point in time 
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No Peaking 

•  Key to determinism: behavior doesn’t 
depend on timing 
– Cannot ask if a token is present 

•  If (not_empty(in)) 
– Out.put(3); 

•  Else 
– Out.put(2); 
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When peaking necessary? 

•  What are cases where we need the 
ability to ask if a data item is present? 
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When Peak Optimization? 

•  What are cases where asking about 
data presence might allow performance 
optimization? 
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Peaking 

•  Removed model restriction (no peaking) 
•  Gained expressive power 

– Can grab data as shows up 
•  Weaken our guarantees 

– Possible to get non-deterministic behavior 
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Process Network Roundup 

Model Deterministic 
Result 

Deterministic 
Timing 

Turing 
Complete 

SDF+fixed-delay 
operators 

Y Y N 

SDF+variable 
delay operators 

Y N N 

DDF no peak Y N Y 
DDF w/ peak N N Y 
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Aspirational 
Approach 
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Approach (1) 
•  Identify natural parallelism 
•  Convert to streaming flow 

–  Initially leave operators software 
– Focus on correctness 

•  Identify flow rates, computation per 
operator, parallelism needed 

•  Refine operators 
– Decompose further parallelism? 
– E.g. SIMD changes making hw3 
– model potential hardware 
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Approach (2) 

•  Refine coordination as necessary for 
implementation 

•  Map operators and streams to 
resources 
– Provision hardware 
– Scheduling: Map operations to operators 
– Memories, interconnect 

•  Profile and tune 
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Approach 
•  Process Network agnostic to operator 

implementation 
•  Implementation explores 

– operator mappings 
•  What fixed SoC provides 
•  Where might allocate hardware for novel SoC 

– Communication mappings 
– Memory allocation 

•  Isolated memories!communication explicit 
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Preclass 1a 

•  Throughput for 1:1 mapping of 
processes to SPs? 

•  Possibly we didn’t know throughputs 
initially – map and measure 
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Preclass 1b 

•  Refine: better mapping to 3 SPs? 
•  Throughput? 
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Preclass 1c 

•  Mapping 1 SIMD and 1 SP? 
•  Throughput? 
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  1/20 
(SIMD)  



4 

Approach 
•  Once have base process network 

(ideally), we have reduced to working in 
this mapping space 

•  Spend our time (in this class) 
– Enriching and elaborating this mapping 

space 
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Threads 
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Thread 
•  Has a separate locus of control (PC) 
•  May share memory 

– Run in common address space with other 
threads 

Now: look at shared memory 
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Issues 

•  Communication – how move data 
between processes? 

•  Synchronization – how define how 
they advance relative to each other? 

•  Determinism – for the same inputs, do 
we get the same outputs? 
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Issues 

•  Communication – read/write in 
common address space 

•  Synchronization – get to choose 
– Semaphores, locks, barriers, data 

presence 
•  Determinism – not unless you’re very 

careful 
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Shared Memory 

•  Good 
– Sharing easy to express 
– Data movement implicit 

•  Bad 
– Easy to introduced unwanted non-

determinism  
– Expensive abstraction to support 

•  Hardware, energy 

– Harder to understand communication 
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What to watch for 

•  Thread 1: 
–  Do stuff 
–  M[123]=12 
–  Do more stuff 
–  A=M[123]*2 

•  Thread 2: 
–  Do different stuff 
–  M[123]=0 
–  Do other stuff 
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What value does A hold? 

Preclass 2a 

P1: 
•   for (i=0;i<N/2;i++)  

   v=f(i); 
   h[v]=h[v]+1;  

P2: 
•   for (i=N/2+1;i<N;i++)  

   v=f(i); 
   h[v]=h[v]+1;  
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What can go wrong here? 

Preclass 2b 

P1: 
•   for (i=0;i<N/2;i++)  

   v=f(i); 
   h[v]=h[v]+1;  

P2: 
•   for (i=N/2+1;i<N;i++)  

   v=f(i); 
   h[v]=h[v]+1;  
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How might we avoid hazard? 

Disciplines 

Don’t really share 
– Exploit actual sharing in limited ways 

•  Privatize 
– Local memory not really shared 
– Server thread to sequentialize access to 

shared state 
•  Use data presence 

– Buffer 
– Explicitly – presence variable and check 
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Disciplines 

•  Read-Only sharing OK 
•  Barrier 

– Force rendezvous at point before continue 
– Like a clock edge in a circuit 
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Expression and 
Implementation not 1:1 

Examples 
•  Pure DPN implemented on shared-

memory processors 
– Private memory, implement buffers in SM 

•  Single threaded DP with conditionals 
–  Implement in multiple threads 

•  SDF with many tasks 
–  Implement schedule of operations on 

single instruction stream 
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SDF in single thread 

While(input) 
A=Astep(in()); 
B=Bstep(A); 
C=Cstep(B); 
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Multiple Ways to Decompose 

•  Searching for 2 targets strings in a 
single document 

•  Run on 2 processor 
•  How decompose and map? 
•  Resource implications? 
•  Data access implications? 
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Approach 

•  Identify design space of mappings 
– Decomposition, hardware mapping 

•  Analyze which meet our platform 
restrictions (are most efficient) 

•  Experiment as necessary 
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Big Ideas 
•  Abstract the problem agnostic from 

implementation 
•  Map based on  

– Computational demand 
– Platform 
– Seldom 1:1  ! rich options to explore 

•  Use restricted patterns to avoid shared-
memory pitfalls 
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Admin 
•  Reading for Day 7 on web 
•  HW3 due Friday 
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