
1

Penn ESE680-002 Spring2007 -- DeHon
1

ESE680-002 (ESE534):
Computer Organization

Day 2: January 10, 2007
Logic and FSM Review

Penn ESE680-002 Spring2007 -- DeHon
2

Last Time

• Computational Design as an
Engineering Discipline

• Importance of Costs

Penn ESE680-002 Spring2007 -- DeHon
3

Today

• Simple abstract computing building blocks
– gates, boolean logic
– registers, RTL

• Logic in Gates
– optimization
– properties
– costs

• Sequential Logic

Penn ESE680-002 Spring2007 -- DeHon
4

Computer Architecture
vs.

Logic Design
• Logic Design is a mature discipline

– There are a set of systematic techniques to
implement and optimize

– We can automate those techniques
• Nonetheless, solutions change with costs

– We can automate wrt a single cost
– Still work to do for multiple, incomparable

costs

Penn ESE680-002 Spring2007 -- DeHon
5

Stateless Functions
(Combinational Logic)

• Compute some “function”
– f(i0,i1,…in) → o0,o1,…om

• Each unique input vector
– implies a particular, deterministic, output

vector

Penn ESE680-002 Spring2007 -- DeHon
6

Specification in Boolean logic

– o=a+b
– o=/(a*b)
– o=a*/b
– o=a*/b + b
– o=a*b+b*c+d*e+/b*f + f*/a+abcdef

– o=(a+b)(/b+c)+/b*/c

2

Penn ESE680-002 Spring2007 -- DeHon
7

Implementation in Gates

• Gate: small Boolean function
• Goal: assemble gates to cover our

desired Boolean function

• Collection of gates should implement
same function

• I.e. collection of gates and Boolean
function should have same Truth Table

Penn ESE680-002 Spring2007 -- DeHon
8

Covering with Gates

– o=(a+/b)(b+c)+/b*/c

Penn ESE680-002 Spring2007 -- DeHon
9

Equivalence

• There is a canonical specification for a
Boolean function
– its Truth Table

• Two expressions, gate netlists, a gate
netlist and an expression -- are the
same iff.
– They have the same truth table

Penn ESE680-002 Spring2007 -- DeHon
10

Netlist

• Netlist: collection of interconnected
gates
– A list of all the gates and what they are

connected to

Penn ESE680-002 Spring2007 -- DeHon
11

Truth Table
• o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

a b c o
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Penn ESE680-002 Spring2007 -- DeHon
12

How many gates?
• o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

a b c o
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

3

Penn ESE680-002 Spring2007 -- DeHon
13

How many gates?
– o=(a+/b)(b+c)+/b*/c

a b c o
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Penn ESE680-002 Spring2007 -- DeHon
14

Engineering Goal

• Minimize resources
– area, gates

• Exploit structure of logic

• “An Engineer can do for a dime what
everyone else can do for a dollar.”

Penn ESE680-002 Spring2007 -- DeHon
15

Sum of Products

• o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

• o=(a+b)(/b+/c)
– a*b+a*/c+b*/c

• o=(a+/b)(b+c)+/b*/c
– a*b+a*c+/b*c +/b*/c

Penn ESE680-002 Spring2007 -- DeHon
16

Minimum Sum of Products

• o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

/b*c + b*/c

Penn ESE680-002 Spring2007 -- DeHon
17

Minimum Sum of Products

• o=(a+b)(/b+/c)

0 0 1 1 1
1 0 0 0 1

00 01 11 10
ab

ca*/b+a*/c+b*/c

a*/b + b*/c

a*/b+a*/c+b*/c

Penn ESE680-002 Spring2007 -- DeHon
18

Redundant Terms

• o=(a+b)(/b+/c)
– a*/b+a*/c+b*/c
– a*/b + b*/c 0 0 1 1 1

1 0 0 0 1

00 01 11 10
ab

c

4

Penn ESE680-002 Spring2007 -- DeHon
19

There is a Minimum Area
Implementation

• o=(a+b)(/b+/c)
– a*/b+a*/c+b*/c
– a*/b + b*/c

0 0 1 1 1
1 0 0 0 1

00 01 11 10
ab

c

Penn ESE680-002 Spring2007 -- DeHon
20

There is a Minimum Area
Implementation

• Consider all combinations of fewer gates:
– any smaller with same truth table?
– there must be a smallest one.

Penn ESE680-002 Spring2007 -- DeHon
21

Not Always MSP

• o=(a+b)(c+d) 3 2-input gates
– a*b+a*c+b*c +b*d 7 2-input gates

• Product of Sums smaller…

Penn ESE680-002 Spring2007 -- DeHon
22

Minimize Area

• Area minimizing solutions depends on
the technology cost structure

• Consider:
– I1: ((a*b) + (c*d))*e*f
– I2: ((a*b*e*f)+(c*d*e*f))

• Area:
– I1: 2*A(and2)+1*A(or2)+1*A(and3)
– I2: 2*A(and4)+1*A(or2)

Penn ESE680-002 Spring2007 -- DeHon
23

Minimize Area

– I1: ((a*b) + (c*d))*e*f
– I2: ((a*b*e*f)+(c*d*e*f))

• Area:
– I1: 2*A(and2)+1*A(or2)+1*A(and3)
– I2: 2*A(and4)+1*A(or2)

• all gates take unit area:
A(l2)=3 < A(l1)=4

• gate size proportional to number of inputs:
A(I1)=2*2+2+3=9 < A(I2)=2*4+2=10

Penn ESE680-002 Spring2007 -- DeHon
24

Best Solution Depends on
Costs

• This is a simple instance of the general
point:
…When technology costs change

the optimal solution changes.

• In this case, we can develop an automated
decision procedure which takes the costs
as a parameter.

5

Penn ESE680-002 Spring2007 -- DeHon
25

Don’t Cares
• Sometimes will have incompletely

specified functions:
a b c o
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 x
1 0 0 x
1 0 1 0
1 1 0 0
1 1 1 0 Penn ESE680-002 Spring2007 -- DeHon

26

Don’t Cares
• Will want to pick don’t care values to

minimize implementation costs:
a b c o
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 x
1 0 0 x
1 0 1 0
1 1 0 0
1 1 1 0

a b c o
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Penn ESE680-002 Spring2007 -- DeHon
27

NP-hard in General
• Logic Optimization

– Two Level Minimization
– Covering w/ reconvergent fanout

• Are NP-hard in general
– …but that’s not to say it’s not viable to find

an optimal solution.
• Cover how to attack in an EDA class

– can point you at rich literature
– can find software to do it for you

Penn ESE680-002 Spring2007 -- DeHon
28

Delay in Gates

• Simple model:
– each gate contributes a fixed delay for

passing through it
– can be different delay for each gate type
– e.g.

• inv = 50ps
• nand2=100ps
• nand3=120ps
• and2=130ps

Penn ESE680-002 Spring2007 -- DeHon
29

Path Delay

• Simple Model: Delay along path is the
sum of the delays of the gates in the path

Path Delay = Delay(And3i2)+Delay(Or2)
Penn ESE680-002 Spring2007 -- DeHon

30

Critical Path

• Path lengths in circuit may differ
• Worst-case performance of circuit

determined by the longest path
• Longest path designated Critical Path

6

Penn ESE680-002 Spring2007 -- DeHon
31

Multiple Paths

Path Delay = Delay(And3i2)+Delay(Or2)

Path Delay = Delay(Or2i1)+Delay(And2)+Delay(Or2)

Penn ESE680-002 Spring2007 -- DeHon
32

Critical Path = Longest

Path Delay = 2

Path Delay = 3

Penn ESE680-002 Spring2007 -- DeHon
33

Critical Path

• There is always a set of critical paths
– set such that the path length of the

members is at least as long as any other
path length

• May be many such paths

Penn ESE680-002 Spring2007 -- DeHon
34

Minimum Delay

• There is a minimum delay for a given
function and technology cost.

• Like area:
– consider all circuits of delay 1, 2, ….
– Work from 0 time (minimum gate delay) up
– stop when find a function which

implements the desired logic function
– by construction no smaller delay

implements function

Penn ESE680-002 Spring2007 -- DeHon
35

Delay also depend on Costs

• Consider again:
– I1: ((a*b) + (c*d))*e*f
– I2: ((a*b*e*f)+(c*d*e*f))

• Delay:
– I1: D(and2)+D(or2)+D(and3)
– I2: D(and4)+D(or2)

Penn ESE680-002 Spring2007 -- DeHon
36

Delay also depend on Costs

• Delay:
– I1: D(and2)+D(or2)+D(and3)
– I2: D(and4)+D(or2)

• D(and2)=130ps, D(and3)=150ps, D(and4)=170ps
D(I2)=(170+D(or2))<D(I1)=(130+150+D(or2))

• D(and2)=90ps, D(and3)=100ps, D(and4)=200ps
D(I2)=(200+D(or2))>D(I1)=(90+100+D(or2))

7

Penn ESE680-002 Spring2007 -- DeHon
37

Delay and Area Optimum Differ
– I1: ((a*b) + (c*d))*e*f
– I2: ((a*b*e*f)+(c*d*e*f))

• D(and2)=130ps, D(and3)=150ps, D(and4)=170ps
D(I2)<D(I1)

• gate size proportional to number of inputs:
A(I1)<A(I2)

• Induced Tradeoff -- cannot always
simultaneously minimize area and delay
cost

Penn ESE680-002 Spring2007 -- DeHon
38

Does delay in Gates make
Sense?

• Consider a balanced tree of logic gates
of depth (tree height) n.

• Does this have delay n?
– (unit delay gates)

• How big is it? (unit gate area)
• How long a side?
• Minimum wire length from input to

output?

Penn ESE680-002 Spring2007 -- DeHon
39

Delay in Gates make Sense?
• (continuing example)
• How big is it? (unit gate area) 2n

• How long a side? Sqrt(2n)= 2(n/2)

• Minimum wire length from input to
output?
– 2*2(n/2)

• Delay per unit length? (speed of light
limit)
– Delay∝2(n/2)

Penn ESE680-002 Spring2007 -- DeHon
40

It’s not all about costs...
• …or maybe it is, just not always about a

single, linear cost.
• Must manage complexity

– Cost of developing/verifying design
– Size of design can accomplish in fixed time

• (limited brainpower)

• Today: human brainpower is most often
the bottleneck resource limiting what we
can build.

Penn ESE680-002 Spring2007 -- DeHon
41

Review Logic Design

• Input specification as Boolean logic
equations

• Represent canonically
– remove specification bias

• Minimize logic
• Cover minimizing target cost

Penn ESE680-002 Spring2007 -- DeHon
42

If’s

• If (a*b + /a*/b)
c=d

• else
c=e

• t=a*b+/a*/b
• c=t*d + /t*e

8

Penn ESE680-002 Spring2007 -- DeHon
43

If Mux Conversion

• Often convenient to think of IF’s as
Multiplexers

• If (a*b + /a*/b)
c=d

• else
c=e

Penn ESE680-002 Spring2007 -- DeHon
44

Muxes

• Mux:
– Selects one of two (several) inputs based

on control bit

Penn ESE680-002 Spring2007 -- DeHon
45

Mux Logic

• Of course, Mux is just logic:
– mux out = /s*a + s*b

• Two views logically equivalent
– mux view more natural/abstract when

inputs are multibit values (datapaths)

Penn ESE680-002 Spring2007 -- DeHon
46

What about Tristates/busses?
• Tristate logic:

– output can be 1, 0, or undriven
– can wire together so outputs can share a

wire

• Is this anything different?

Penn ESE680-002 Spring2007 -- DeHon
47

Tristates
• Logically:

– No, can model correct/logical operation of
tristate bus with Boolean logic

– Bus undriven (or multiply driven) is Don’t-
Care case

• no one should be depending on value

• Implementation:
– sometimes an advantage in distributed

control
• don’t have to build monolithic, central controller

Penn ESE680-002 Spring2007 -- DeHon
48

Finite Automata

• Recall from CSE262 (maybe ESE200?)
• A DFA is a quintuple M={K,Σ,δ,s,F}

– K is finite set of states
– Σ is a finite alphabet
– s∈K is the start state
– F⊆K is the set of final states
– δ is a transition function from K×Σ to K

9

Penn ESE680-002 Spring2007 -- DeHon
49

Finite Automata

• Less formally:
– Behavior depends not just on input

• (as was the case for combinational logic)
– Also depends on state
– Can be completely different behavior in

each state
– Logic/output now depends on state and

input

Penn ESE680-002 Spring2007 -- DeHon
50

Minor Amendment

• A DFA is a sextuple M={K,Σ,δ,s,F,Σo}
� Σo is a finite set of output symbols
� δ is a transition function from K×Σ to K×Σo

Penn ESE680-002 Spring2007 -- DeHon
51

What power does the DFA
add?

Penn ESE680-002 Spring2007 -- DeHon
52

Power of DFA

• Process unbounded input with finite logic

• State is a finite representation of what’s
happened before
– finite amount of stuff can remember to

synopsize the past
• State allows behavior to depend on past

(on context)

Penn ESE680-002 Spring2007 -- DeHon
53

Registers

• New element is a state element
• Canonical instance is a register:

– remembers the last value it was given until
told to change

– typically signaled by clock

Penn ESE680-002 Spring2007 -- DeHon
54

Issues of Timing...

• …many issues in detailed
implementation
– glitches and hazards in logic
– timing discipline in clocking
– …

• We’re going to work above that level for
the most part this term.

• Watch for these details in ESE570

10

Penn ESE680-002 Spring2007 -- DeHon
55

Same thing with registers

• Logic becomes:
– if (state=s1)

• boolean logic for state 1
– (including logic for calculate next state)

– else if (state=s2)
• boolean logic for state2

– …
– if (state=sn)

• boolean logic for state n
Penn ESE680-002 Spring2007 -- DeHon

56

Finite-State Machine (FSM)

• Logic core
• Plus registers to hold state

Penn ESE680-002 Spring2007 -- DeHon
57

State Encoding

• States not (necessarily) externally visible
• We have freedom in how to encode them

– assign bits to states
• Usually want to exploit freedom to

minimize implementation costs
– area, delay, energy

• (again, algorithms to attack -- EDA)

Penn ESE680-002 Spring2007 -- DeHon
58

Multiple, Interacting FSMs

• What do I get when I wire together more
than one FSM?

Penn ESE680-002 Spring2007 -- DeHon
59

Multiple, Interacting FSMs

• What do I get when I wire together more
than one FSM?

• Resulting composite is also an FSM
– Input set is union of input alphabets
– State set is product of states:

• e.g. for every sai in A.K and sbj in B.K there will
be a composite state (sai, sbj) in AB.K

– Think about concatenating state bits

Penn ESE680-002 Spring2007 -- DeHon
60

Multiple, Interacting FSMs

• In general, could get product number of
states
– |AB.K| = |A|*|B| … can get large fast

• All composite states won’t necessarily
be reachable
– so real state set may be < |A|*|B|

11

Penn ESE680-002 Spring2007 -- DeHon
61

Multiple, Interacting FSMs

• Multiple, “independent” FSMs
– often have implementation benefits

• localize inputs need to see
• simplify logic

– decompose/ease design
• separate into small, understandable pieces

– can sometimes obscure behavior
• not clear what composite states are reachable

Penn ESE680-002 Spring2007 -- DeHon
62

FSM Equivalence

• Harder than Boolean logic
• Doesn’t have unique canonical form
• Consider:

– state encoding not change behavior
– two “equivalent” FSMs may not even have

the same number of states
– can deal with infinite (unbounded) input
– ...so cannot enumerate output in all cases

Penn ESE680-002 Spring2007 -- DeHon
63

FSM Equivalence

• What matters is external observability
– FA accepts and rejects same things
– FSM outputs same signals in response to

every possible input sequence
• Possible?

– Finite state suggests there is a finite
amount of checking required to verify
behavior

Penn ESE680-002 Spring2007 -- DeHon
64

FSM Equivalence Flavor

• Given two FSMs A and B
– consider the composite FSM AB
– Inputs wired together
– Outputs separate

• Ask:
– is it possible to get into a composite state

in which A and B output different symbols?
• There is a literature on this

Penn ESE680-002 Spring2007 -- DeHon
65

FSM Specification

• St1: goto St2
• St2:

– if (I==0) goto St3
– else goto St4

• St3:
– output o0=1
– goto St1

• St4:
– output o1=1
– goto St2

• Could be:
– behavioral language
– computer language
– state-transition graph

Penn ESE680-002 Spring2007 -- DeHon
66

Systematic FSM Design
• Start with specification
• Can compute boolean logic for each state

– If conversion…
– including next state translation
– Keep state symbolic (s1, s2…)

• Assign states
• Then have combinational logic

– has current state as part of inputs
– produces next state as part of outputs

• Design comb. Logic and add state registers

12

Penn ESE680-002 Spring2007 -- DeHon
67

Admin: Reminder

• No class Monday
– MLK Holiday

• Next class is Wednesday
– Logic assignment due Wednesday

• Office Hours
– Nachiket F 12:30-2:00pm (GRW 57)
– André T 4:00-5:30pm

• This week Moore 305 (eventually GRW262)

Penn ESE680-002 Spring2007 -- DeHon
68

Big Ideas
[MSB Ideas]

• Can implement any Boolean function in
gates

• Can implement any FA with gates and
registers

Penn ESE680-002 Spring2007 -- DeHon
69

Big Ideas
[MSB-1 Ideas]

• Canonical representation for
combinational logic

• Transformation
– don’t have to implement the input literally
– only have to achieve same semantics
– trivial example: logic minimization

• There is a minimum delay, area
• Minimum depends on cost model

