ESES534:
Computer Organization

Day 4: January 27, 2010
Sequential Logic
(FSMs, Pipelining, FSMD)

#&Penn

Previously

.

Boolean Logic

* Gates

* Arithmetic

» Complexity of computations
— E.g. area and delay for addition

Today

» Sequential Logic
— Add registers, state
— Finite-State Machines (FSM)
— Register Transfer Level (RTL) logic
— Datapath Reuse
— Pipelining
— Latency and Throughput
— Finite-State Machines with Datapaths (FSMD)

3

Preclass

» Can we solve the problem entirely using
Boolean logic functions?

Latches, Registers

* New element is a state element.
+ Canonical instance is a register:

—remembers the last value it was given until in
told to change

— typically signaled by clock
load —

out

Penn ESE534 Spring2010 - DeHon

Why Registers?

Penn ESE534 Spring2010 - DeHon

Reuse

* In general, we want to reuse our
components in time

— not disposable logic

* How do we do allow .
guarantee disciplined reuse?

B3 A3 B2 A2 B1 A1 BO A0

s H H H H ’
s8 s2 st so

Penn ESE534 Spring2010 — DeHon

Synchronous Logic Model
+ Data starts

Inputs Outputs
— Inputs to circuit " legc [
— Registers &

Bonian
» Perform combinational B
(boolean) logic m
* Outputs of logic
— Exit circuit
— Clocked into registers
+ Given long enough clock
— Think about registers getting values updated by

logic on each clock cycle 9
Penn ESE534 Spring2010 -- DeHon

Preclass

» How do we build an adder for arbitrary
input width?

Penn ESE534 Spring2010 -- DeHon

To Reuse Logic...

» Make sure all logic completed evaluation
— Outputs of gates are valid
* Meaningful to look at them
— Gates are “finished” with work and ready to be
used again
* Make sure consumers get value

— Before being overwritten by new calculation
(new inputs)

Penn ESE534 Spring2010 — DeHon

Issues of Timing...

+ ...many issues in detailed implementation
— glitches and hazards in logic
— timing discipline in clocking

+ We're going to (mostly) work above that
level for the most part this term.

— Will talk about the delay of logic between
registers

« Watch for these details in ESE370/570

Penn ESE534 Spring2010 -- DeHon

Preclass

* What did the addition of state register(s)
do for us?

Penn ESE534 Spring2010 -- DeHon

Added Power

» Process unbounded input with finite logic

« State is a finite (bounded) representation
of what’s happened before
— finite amount of stuff can remember to
synopsize the past

« State allows behavior to depend on past
(on context)

13
enn ESE534 Spring2010 -- DeHon

FSM Model

* FSM — a model of computations

* More powerful than Boolean logic
functions

Inputs

Outputs
. BOth Logic +> gg:te
— Theoretically L
— practically ’—‘
E534 S| - DeH Current

State

* Less formally:

Penn ESE534 Spring2010 -- DeHol

Finite State Machine

— Behavior depends not just on input
« (as was the case for combinational logic)
— Also depends on state

— Can be completely different behavior in
each state

— Logic/output now depends on both
« state and input

Finite-State Machine (FSM)
(Finite Automata)

* Logic core
* Plus registers to hold state

Inputs

’_
U

Current
State

Outputs

. Next
Logic State

Formal FSM Specification
(Abstract from implementation)

An FSM is a sextuple M={K,2,9,s,F,Z}
— K is finite set of states

uuuuuuu

Input
—/—- Logic

— X is afinite alphabet for inputs
—s&K is the start state
— FCK is the set of final states

Current

- 3, is a finite set of output symbols
- d is a transition function from KxX to KxX

* Logic becomes:

Penn ESE534 Spring2

Specifying an FSM

—if (state=s1)

« boolean logic for state 1

— (including logic for calculate next state)

—else if (state=s2)

« boolean logic for state2
— if (state=sn)

* boolean logic for state n

18

010 -- DeHon

FSM Specification

» Could be:
— behavioral language
— computer language
— state-transition graph
— extract from gates +

- St3: registers
— output 00=1
— goto St1

+ St4:
— output 01=1
— goto St2

Penn ESE534 Spring2010 -- DeHon

+ St1: goto St2

« St2:
— if (I==0) goto St3
— else goto St4

00=1 ol=1

State Encoding

.

States not (necessarily) externally visible
* We have freedom in how to encode them
— assign bits to states

Usually want to exploit freedom to
minimize implementation costs

— area, delay, energy

(there are algorithms to attack — ESE535)

3

20

FSM Equivalence

Harder than Boolean logic
Doesn’t have unique canonical form
Consider:

— state encoding not change behavior

—two “equivalent” FSMs may not even have
the same number of states

— can deal with infinite (unbounded) input

—...s0 cannot enumerate output in all cases

« No direct correspondence of a truth table
Penn ESE534 Spring2010 -- DeHon

21

FSM Equivalence

* What matters is external observability

— FSM outputs same signals in response to
every possible input sequence

¢ Possible?

— Finite state suggests there is a finite
amount of checking required to verify
behavior

22

Penn ESE534 Spring2010 -- DeHon

FSM Equivalence Flavor

Given two FSMs A and B

— consider the composite FSM AB

— Inputs wired together

— Outputs separate

» Ask:

—is it possible to get into a composite state
in which A and B output different symbols?

¢ There is a literature on this
23

Penn ESE534 Spring2010 -- DeHon

Systematic FSM Design

Start with specification

Can compute boolean logic for each state
— If conversion...

— including next state translation
— Keep state symbolic (s1, s2...)
Assign state encodings
Then have combinational logic g

— has current state as part of inputs

— produces next state as part of outputs

Design comb. logic and add state registers

Inputs Outputs

g Next

24

Penn ESE534 Spring2010 -- DeHon

Arbitrary Adder

* Work through design as FSM if
necessary

25
Penn ESE534 Spring2010 - DeHon

RTL

» Register Transfer Level description
* Registers + Boolean logic

* Most likely: what you've written in
Verilog, VHDL

26
Penn ESE534 Spring2010 - DeHon

Datapath Reuse

27

Penn ESE534 Sp 2010 -- DeHon

Reuse: “Waiting” Discipline

* Use registers and timing for orderly
progression of data

B3 A3 B2 A2 B1 A1 BO A0

- H H H H ’

Penn ESE534 Spring2010 -- DeHon

Example: 4b Ripple Adder

B3AS B2A2 BI Al BO A

a H H H H ’

» Recall 2 gates/FA
* How fast can we clock this?
* Min Clock Cycle: 8 gates A, B to S3

29
>enn ESE534 Spring2010 -- DeHon

Can we do better?

« Clock faster, reuse elements sooner?

a8

C4_ FA — FA @ FA 1~ FA —o

Pty

Stagger Inputs

» Correct if expecting A,B[3:2] to be
staggered one cycle behind A,B[1:0]

» ...and succeeding stage expects S[3:2]
staggered from S[1:0]

s H H H H °

Speed
How fast can ++ ++
we clock this? FA k| FA }—o
What is the
delay from “ ra L] Fa |
A,B to S3? + +

pe— 0

Align Data / Balance Paths
t H
discipline to FA | Fa
line up pipe
stages
in diagrams.
- FA 1 FA ;

Pipelining and Timing

» Once introduce pipelining
— Clock cycle = rate of reuse
— Is not the same as the

delay to complete a
computation

= H H

34 Spring2010 -- DeHon

H H °

34

Pipelining and Timing

* Throughput

— How many results
can the circuit
produce per unit time

— If can produce one
result per cycle,

* Reciprocal of
clock period

» Throughput this
design?

Penn ESE534 Spring2010 - DeHon

35

Pipelining and Timing

* Latency

— How long does it
take to produce one
result

— Product of clock
cycle and number of
clocks between input
and output

» Latency this design?

Penn ESE534 Spring2010 - DeHon

36

Example: 4b RA pipe 2

* Recall 2 gates/FA
» Latency and Throughput:

+ Latency: 8 gates to S3

» Throughput: 1 result/ 4 gate delays max

Penn ESE534 Spring2010 — DeHon

Deeper?
» Can we do it again?

e What'’s our limit?

* Why would we stop?

38

More Reuse

» Saw could pipeline and reuse FA more
frequently

» Suggests we're wasting the FA part of
the time in non-pipelined

B3 A3 B2 A2 B1 A1 BO A0

—What is FA3 doing
while FAO is
computing?

More Reuse (cont.)

« If we're willing to take 4 gate-delay
units, do we need 4 FAs?

B3 A3 B2 A2 B1 A1 BO AD

cwu

Spring2010 -- DeHon

40

Can pipeline to FA.

What if don’t need
the throughput?

If don’t need throughput,
reuse FA on SAME
addition.

41

Penn ESE534 Spring2010 - DeHon

Bit Serial Addition

FA |

Assumes LSB
first ordering of
input data.

Penn ESE534 Spring2010 - DeHon

Bit Serial Addition: Pipelining
 Latency and throughput?
» Latency: 8 gate delays

— 10 for 5% output bit
» Throughput: 1 result/ 10

gate delays
* Registers do have time
overhead

— setup, hold time, clock jitter

43

Multiplication

¢ Can be defined in terms of addition

» Ask you to play with implementations
and tradeoffs in homework 2
— Out today
— Pickup from syllabus page on web

44

Design Space for
Computation

45
Penn ESE534 Spring2010 -- DeHon

Compute Function

* Compute:
y=Ax? +Bx +C
* Assume
—D(Mpy) > D(Add)
« E.g. D(Mpy)=24, D(Add)=8
—A(Mpy) > A(Add)
A(Mpy)=64, A(Add)=8

46

*E.g.

Penn ESE534 Spring2010 Hy

Spatial Quadratic

A
Latency?

Throughput?
Area? C

B
- D(Quad) = 2*D(Mpy)+D(Add) = 56
- Throughput 1/(2*D(Mpy)+D(Add)) = 1/56
~ + A(Quad) = 3*A(Mpy) + 2*A(Add) = 208 ,

DeHon

Pipelined Spatial Quadratic

Latency?
Throughput?
Area?

* D(Quad) = 3*D(Mpy) = 72
* Throughput 1/D(Mpy) = 1/24
* A(Quad) = 3*A(Mpy) + 2*A(Add)+6A(Req)

Quadratic with Single
Multiplier and Adder?

» We've seen reuse to perform the same
operation
— pipelining
— bit-serial, homogeneous datapath

» We can also reuse a resource in time to
perform a different role.

Quadratic Datapath

« Start with one of
each operation

* (alternatives where
build multiply from
adds...e.g.
homework)

Quadratic Datapath

» Multiplier servers
multiple roles

— X*X
— A*(x*x) §
- B*x |
* —
* X, X*X, X

* x,A,B
X, |

Penn ESE534 Spring2010 -- DeHon

Repeated Operations

» What operations occur multiple times in
this datapath?

— X*X, A*(x*x), B*x
— (Bx)+c, (A*x*x)+(Bx+c)

Quadratic Datapath

« Multiplier serves
multiple roles

Penn ESE!

- X*X
— A*(x*Xx)
— B*x
* Will need to be able
to steer data
(switch
__.Interconnections) 52

Quadratic Datapath

* Multiplier servers X*X reg.

multiple roles

—X*x X

— A*(x*Xx)

- B*x A
* X, X*X B

« x,AB

Penn ESE534 Spring2010 -- DeHon

Quadratic Datapath
+ Adder serves X*x reg.
multiple roles
— (Bx)+c X
— (A*x*x)+(Bx+c)
* one always mpy A
output
C
* C, Bx+C
Bx+C
Quadratic Datapath
* Add input
register for x
x*X reg.
X
Y reg.
A
B —
c
i
Bx+C reg.
FSMD

* FSMD = FSM + Datapath

« Stylization for building controlled
datapaths such as this (a pattern)

» Of course, an FSMD s just an FSM

— it's often easier to think about as a
datapath

— synthesis, place and route tools have been
notoriously bad about discovering/
exploiting datapath structure

59
Penn ESE534 Spring2010 -- DeHon

Quadratic Datapath

xX*x reg.

X

Y reg.
A d
B
c——

Bx+C reg.

Quadratic Control

Now, we just need to control the datapath
What control?

Penn ESE534 Spring2010 -

» Control: XX reg.
—LDx
— LD x*x X
— MA Select A Y reg.
- MB
Select B !
— AB Select c————
— LD Bx+C f
—LDY Bx+C reg.
Quadratic FSMD
X*X regd. 7
X
A Y reg.
B —-
(o]
i
r
Bx+C reg.

10

Quadratic FSMD Control
+ S0: if (go) LD_X; goto S1
— else goto SO
e S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x
—goto S2
« S2: MA_SEL=x,MB_SEL[1:0]=B
—goto S3
+ S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A
—goto S4
+ S4: AB_SEL=Bx+C, LD_Y
—goto SO

Senn ESE534 Spring2010 - DeHon

61

Quadratic FSMD Control

« S0:if (go) LD_X; goto S1
— else goto SO

+ S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x
— goto S2

* S2: MA_SEL=x,MB_SEL[1:0]=B o 1B %
7Y

« 83: AB_SEL=C,MA_SEL=x*x, MB_SEL=A

— goto S4

« S4: AB_SEL=Bx+C, LD_Y x
— goto SO

Y reg.

A

B

C

Bx+C reg.

Quadratic FSM =

* D(mux3)=D(mux2)=1 x

* A(mux2)=2

- A(mux3)=3

* A(QFSM) ~=10

 Latency/Throughput/Area?

» Latency: 5*(D(MPY)+D(mux3)) = 125

» Throughput: 1/Latency = 1/125

* Area: A(Mpy)+A(Add)+5*A(Reg) +2*A
(Mux2)+A(Mux3)+A(QFSM) = 109 o

cCwx

Penn ESE534 Spring2010 -- DeHon

Admin: Reminder

¢ Chrome and Blackboard don’t mix
* Next homework due Monday

» Office hours W2pm
— 30 minutes after class

64
Penn ESE534 Spring2010 -- DeHon

Big Ideas
[MSB Ideas]

* Registers allow us to reuse logic
» Can implement any FSM with gates and
registers
* Pipelining
—increases parallelism
— allows reuse in time (same function)
+ Control and Sequencing
—reuse in time for different functions
+ Can tradeoff Area and Time

65

Penn ESE534 Spring2010 - DeHon

Big Ideas
[MSB-1 Ideas]

» RTL specification
* FSMD idiom

66

Penn ESE534 Spring2010 - DeHon

11

