Today

- Partitioning
 - why important
 - practical attack
 - variations and issues

Motivation (1)

- Divide-and-conquer
 - trivial case: decomposition
 - smaller problems easier to solve
 - net win, if super linear
 - $\text{Part(n)} + 2 \times T(n/2) < T(n)$
 - problems with sparse connections or interactions
 - Exploit structure
 - limited cutsize is a common structural property
 - random graphs would not have as small cuts

Motivation (2)

- Cut size (bandwidth) can determine area
- Minimizing cuts
 - minimize interconnect requirements
 - increases signal locality
- Chip (board) partitioning
 - minimize IO
- Direct basis for placement

Bisection Bandwidth

- Partition design into two equal size halves
- Minimize wires (nets) with ends in both halves
- Number of wires crossing is **bisection bandwidth**
- lower bw = more locality

Interconnect Area

- Bisection is lower-bound on IC width
 - When wire dominated, may be tight bound
- (recursively)
Classic Partitioning Problem

- **Given:** netlist of interconnect cells
- Partition into two (roughly) equal halves \((A, B)\)
- minimize the number of nets shared by halves
- “Roughly Equal” – balance condition: \((0.5 - \delta)N \leq |A| \leq (0.5 + \delta)N\)

Balanced Partitioning

- NP-complete for general graphs
 - [ND17: Minimum Cut into Bounded Sets, Garey and Johnson]
 - Reduce SIMPLE MAX CUT
 - Reduce MAXIMUM 2-SAT to SMC
 - Unbalanced partitioning poly time
- Many heuristics/attacks

KL FM Partitioning Heuristic

- Greedy, iterative
 - pick cell that decreases cut and move it
 - repeat
- small amount of non-greediness:
 - look past moves that make locally worse
 - randomization

Fiduccia-Mattheyses (Kernighan-Lin refinement)

- Start with two halves (random split?)
- Repeat until no updates
 - Start with all cells free
 - Repeat until no cells free
 - Move cell with largest gain (balance allows)
 - Update costs of neighbors
 - Lock cell in place (record current cost)
 - Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points

Efficiency

- Tricks to make efficient:
 - Expend *little* work picking move candidate
 - Constant work \(\approx O(1)\)
 - Means amount of work not dependent on problem size
 - Update costs on move cheaply \([O(1)]\)
 - Efficient data structure
 - update costs cheap
 - cheap to find next move

Ordering and Cheap Update

- Keep track of Net gain on node == delta net crossings to move a node
 - cut cost after move = cost - gain
- Calculate node gain as \(\Sigma\) net gains for all nets at that node
 - Each node involved in several nets
- Sort nodes by gain
FM Cell Gains
Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node

After move node?
• Update cost
 – Newcost = cost - gain
• Also need to update gains
 – on all nets attached to moved node
 – but moves are nodes, so push to
 • all nodes affected by those nets

Composability of Net Gains
-1 + 1 -0 -1 = -1

FM Recompute Cell Gain
• For each net, keep track of number of cells in each partition [F(net), T(net)]
• Move update: (for each net on moved cell)
 – if T(net) == 0, increment gain on F side of net
 • (think -1 => 0)
 – if T(net) == 1, decrement gain on T side of net
 • (think 1 => 0)
 – decrement F(net), increment T(net)
FM Recompute Cell Gain

- For each net, keep track of the number of cells in each partition \([F(\text{net}), T(\text{net})]\).
- Move update: (for each net on moved cell)
 - if \(T(\text{net})=0\), increment gain on F side of net
 - if \(T(\text{net})=1\), decrement gain on T side of net
 - decrement \(F(\text{net})\), increment \(T(\text{net})\)
 - if \(F(\text{net})=1\), increment gain on F cell
 - if \(F(\text{net})=0\), decrement gain on all cells (T)

FM Recompute Cell Gain

- Move update: (for each net on moved cell)
 - if \(T(\text{net})=0\), increment gain on F side of net
 - if \(T(\text{net})=1\), decrement gain on T side of net
 - decrement \(F(\text{net})\), increment \(T(\text{net})\)
 - if \(F(\text{net})=1\), increment gain on F cell
 - if \(F(\text{net})=0\), decrement gain on all cells (T)

FM Recompute (example)

[Diagram showing cell gain recomputation with example values: +1 +1 +1 +1, -1000, note markings here are deltas...earlier pix were absolutes]
FM Recompute (example)

FM Optimization Sequence (ex)

FM Data Structures
- Partition Counts A,B
- Two gain arrays
 - One per partition
 - Key: constant time cell update
- Cells
 - successors
 - Key: (consumers)
 - inputs
 - locked status

FM Running Time?
- Randomly partition into two halves
- Repeat until no updates
 - Start with all cells free
 - Repeat until no cells free
 - Move cell with largest gain
 - Update costs of neighbors
 - Lock cell in place (record current cost)
 - Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points
FM Running Time

- **Claim**: small number of passes to converge
 - Constant passes?
- Small (constant?) number of random starts
- N cell updates each round (swap)
- Updates K + fanout work (avg. fanout K)
 - assume at most K inputs to each node
 - For every net attached (K+1)
 - For every node attached to those nets (O(K))
- Maintain ordered list O(1) per move
 - every io move up/down by 1
- Running time: O(K^2N)
 - Algorithm significant for its speed
 - (more than quality)

FM Starts?

So, FM gives a **not bad** solution quickly

21K random starts, 3K network -- Alpert/Kahng

Weaknesses?

- Local, incremental moves only
 - hard to move clusters
 - no lookahead
- Looks only at local structure

Improving FM

- Clustering
- Initial partitions
- Runs
- Partition size freedom
- Replication

Following comparisons from Hauck and Boriello ’96

Clustering

- Group together several leaf cells into cluster
- Run partition on clusters
- Uncluster (keep partitions)
 - iteratively
- Run partition again
 - using prior result as starting point
 - instead of random start

Clustering Benefits

- Catch local connectivity which FM might miss
 - moving one element at a time, hard to see move whole connected groups across partition
- Faster (smaller N)
 - METIS -- fastest research partitioner exploits heavily
 - FM work better w/ larger nodes (???)
How Cluster?

• Random
 – cheap, some benefits for speed
• Greedy “connectivity”
 – examine in random order
 – cluster to most highly connected
 – 30% better cut, 16% faster than random
• Spectral (next time)
 – look for clusters in placement
 – (ratio-cut like)
• Brute-force connectivity (can be \(O(N^2) \))

Initial Partitions?

• Random
• Pick Random node for one side
 – start imbalanced
 – run FM from there
• Pick random node and Breadth-first search to fill one half
• Pick random node and Depth-first search to fill half
• Start with Spectral partition

Initial Partitions

• If run several times
 – pure random tends to win out
 – more freedom / variety of starts
 – more variation from run to run
 – others trapped in local minima

Number of Runs

• 2 - 10%
• 10 - 18%
• 20 <20% (2% better than 10)
• 50 (4% better than 10)
• ...but?

FM Starts?

21K random starts, 3K network -- Alpert/Kahng
Unbalanced Cuts

- Increasing slack in partitions
 - may allow lower cut size

Unbalanced Partitions

Following comparisons from Hauck and Boriello '96

Replication

- Trade some additional logic area for smaller cut size
 - Net win if wire dominated

Replication data from: Enos, Hauck, Sarafzadeh '97

Replication

- 5% \(\Rightarrow\) 38% cut size reduction
- 50% \(\Rightarrow\) 50+% cut size reduction

What Bisection doesn’t tell us

- Bisection bandwidth purely geometrical
- No constraint for delay
 - i.e. a partition may leave critical path weaving between halves

Critical Path and Bisection

Minimum cut may cross critical path multiple times. Minimizing long wires in critical path \(\Rightarrow\) increase cut size.
So...

- Minimizing bisection
 - good for area
 - oblivious to delay/critical path

Partitioning Summary

- Decompose problem
- Find locality
- NP-complete problem
- Linear heuristic (KLFM)
- Many ways to tweak
 - Hauck/Boriello, Karypis
- Even better with replication
- Only address cut size, not critical path delay

Admin

- Reading for Wed. online
- No class next Monday (23rd)
 - Use time to finish Assignment 2B
 - Due 25th

Today’s Big Ideas:

- Divide-and-Conquer
- Exploit Structure
 - Look for sparsity/locality of interaction
- Techniques:
 - Greedy
 - Incremental improvement
 - Randomness avoid bad cases, local minima
 - Incremental cost updates (time cost)
 - Efficient data structures