
ESE535 Spring 2008

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2008 Assignment #3 Monday, February 18

Due: Monday, March 3rd, beginning of class.

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration Please work independently on this assignment. You may discuss general
algorithmic strategies for the coding exercises (problem 1) and help each other with the
compiler, build environment, and debugging, but each student should develop his or her own
solution. If you do discuss strategy or getting debugging help, please acknowledge it in your
writeup.

Writeup Writeup should be in an electronically readable format (HTML or PDF preferred—
I do not want to decipher handwriting or hand-drawn figures). State any assumptions you
need to make.

Problems

1. Add support to the provided cplace infrastructure (described at end) to compute the
delay of a netlist and report the slack at each input/output/gate node (simply compute
the topological delay—you do not need to worry about the function of each logic gate,
and hence, do not need to eliminate possible false paths). Run the code and report
the delay for each netlist in the provided benchmark set. Turnin:

• Your code (no binary files, but in an archive like the provided support so it can
be unpacked and built; this means the make file should be updated to build the
application with your additions)

• Description of your algorithm and the code the supports it

• Table summarizing the delays for all netlists in the provided benchmark set.

1

ESE535 Spring 2008

2. Consider the following, simple microcontroller datapath:

register

Instruction
 Store

Register
 File

Decode

ALU Branch?

MUX

+1

register

Program Counter

Insruction

Assume:
 if write to a register
and read from it in
same cycle, get
the new value
(i.e. value being
 written)

1ns
1ns

1ns

1ns

0.5ns

0.5ns
0.5ns

Put
registers
here
for
delayed
branch
case.

n

(a) What is the delay of the datapath as shown?

Consider changing the branch instruction to a delayed branch instruction that
transfers control n cycles after the branch is issued. This is equivalent to putting
n registers on the path as shown.

(b) Using the retiming procedure from class:

i. How does the clock cycle change with n?

ii. Above what value of n does further increase of n result in no further de-
crease in cycle time? Why? (Show the G-1/C graph and use that in your
explanation.)

iii. For this maximum useful value of n, show the retimed circuit which achieves
the minimum cycle time.

(c) Starting from the retimed circuit with the maximum useful branch delay, n. C-
slow the circuit so that the cycle time of the C-slowed circuit is equal to the delay
of the ALU.

i. What is the value of C necessary to achieve this?

ii. Show the circuit after C-slowing and retiming the circuit. Color each of the C
different register sets differently similar to the example in the Day 8 lecture.

[Note: This is a deliberately simple datapath. While processors did go through a
period where they used delayed branches, that was ultimately considered a poor idea
for technology-abstract ISA scalability. Modern processors use many more techniques
to deal with this cyclic dependence, but some do run interleaved streams using a similar
idea to C-slowing. For more details see CIS501.]

2

ESE535 Spring 2008

3. Consider 1D placement (e.g. of a datapath or a standard-cell row). You have a netlist
graph G = (V, E). You want to assign each node (vi ∈ V) to a unique location
j ∈ [0..(|V | − 1)].

(a) What is the ideal cost function you wish to minimize in order to:

i. Minimize energy (assume the energy of each vi is proportional to the (sum of
length of the wire to the most distant nodes to the left and right of vi) and
(the activity factor of vi)).

ii. Minimize delay of the netlist (assume each vi can be evaluated in time Tv, and
the time it takes to route a signal from location i to location j is |j−i|×Tint).

iii. Minimize area of the netlist (assume all cells are the same width and height
is linear in channel width)

Cost function provided for each case should be for the full assignment.

(b) Considering the algorithms recently discussed in class (KLFM partitioning, Hall’s
Spectral 1D placement, maxflow-based partitioning), for each of the three targets
above:

• Select a base approach.

• Describe how you would adapt/modify/use the selected approach to optimize
for the target.

• Identify how the selected approach trends the design toward minimizing the
ideal cost function.

• Describe or show scenarios where the optimization does not perfectly track
the ideal cost function (or argue why the approach does optimize the ideal
cost function).

3

ESE535 Spring 2008

Initial cplace Project Details

For the project this term, we will cluster and place a netlist to minimize delay. Concretely,
we will consider placement for an island-style FPGA. Interconnect for the island-style FPGA
is a mesh. Each mesh-location (island or CLB) can hold a number (e.g. 4) of individual
Lookup-Tables. Similarly, each periphery position around the central logic mesh can hold
a number of inputs or outputs. The delay of each LUT is a constant (Tblock delay). The
delay for each interconnect link depends on the locations of the source and sink LUT. If
the source and sink are in the same block, the delay is short (Tintra block). If the source
and sink are in different blocks, the delay is the sum of a fixed delay for leaving the block
(Tinter block initial) and a delay proportional to the Manhattan distance between the source
and sink ((|srcx − dstx|+ |srcy − dsty|)× Thop). Since your task is only to place the IOs and
LUTs, you cannot change the total LUT delay on each path. Your placement will define the
interconnect delays. In a typical FPGA, the majority of the delay is in the interconnect.

An academic package that solves this problem is t-vpack/vpr from the University of Toronto
[2, 1, 3]. This package solves the problem in two separate phases: (1) clustering (t-vpack)
and (2) placement (vpr). We will look at solving clustering and placement simultaneously.
We will use code from the t-vpack/vpr distribution as a basis for our work (reading the initial
netlist, representing the netlist in C, writing out the final cluster and placement). Using this
code base, we avoid having to rewrite these I/O and representation routines, allowing us
to focus on the optimization. This also allow us to run out final clusters and placements
through VPR (which also performs routing) for a head-to-head comparison at the end.

Please look at parts of the VPR manual (available in ∼ese535/spring2008/manual 430.

pdf) for descriptions of the architecture and placement coordinate system. Particularly
Figure 2 shows what the basic module of a LUT and FF looks like. Figure 10 shows the
coordinate system. The manual also defines the netlist format. Since we provide code to
read and write this formats, you do not have to implement it, but you will likely find it
useful for debugging to be able to look at these files and make sense of them.

In future weeks you will select an approach and implement code to place the LUTs in an
attempt to minimize this delay. As a warmup exercise this week, you will write a routine to
compute the delay of a given placement and the slack of each node.

We are providing an infrastructure in C which we call cplace. In addition to providing the
base t-vpack/vpr netlist capabilities, we are also providing a representation for the mesh and
islands and some initial (dumb) placements. The initial placements give us something to
work with this week while we’re developing the delay calculator. They also give you an easy
target against which to show improvement as you first start developing your own placement
optimization in following weeks.

Pickup the code in cplace.tar from ∼ese535/spring2008/cplace.tar on eniac. Unpack
it with tar -xvf cplace.tar. Run make to build. This should produce an executable
cplace which you can run. cplace with no arguments will produce a usage message. The
makefile in the test subdirectory runs cplace on three test cases and provides an example
of how to use it. Please use the architecture and delay parameters in the Makefile for
producing your results for this assignment. At the moment there are only three example

4

ESE535 Spring 2008

input files, one without flip flops and two with flip flops. We will update cplace.tar to
include additional test cases in the next few days.

For this assignment, we provide you a stub for the delay calculation in the file compute delay.c.
Currently the routines does nothing. You should complete the routines, including the rou-
tine print slack which prints the slack of the nodes. Caveat: blocks of type LATCH or
LUT AND LATCH have flip flops which will both start and end paths. As such, you may need
to exercise some care to deal separately with the delays of these nodes based on whether you
are looking at them as inputs to the flip-flop or outputs from the flip-flop. Particularly, if you
think about the slack of these flop nodes, they effectively have two slacks to deal with—one
for the path which starts at the flop and one for the path which ends at the flop.

A quick overview of code in cplace:

• cplace.c — contains the main function which drives the overall optimizer; it also contains
the command-line option parsing. You will most likely not need to modify it this week,
but you will need to in subsequent weeks.

• globals.h — defines global data structures: notably the block and net datastructure
which represent the netlist.

• cplace.h — defines the type structure for block and net.
• mesh.c, mesh.h — routines for working with the physical mesh, including placing and

moving blocks, legality checks, and printing out the placement and clustering. The high-
level place/unplace/move operations may be the only ones you need to use.

• output clustering.c — prints out the cluster. You should not need to touch.
• read blif.c — prints out the cluster. You should not need to touch.
• ff pack.c — packs LUTs and FFs. You should not need to touch.
• heapsort.c — a sort implementation. You should not need to touch. You may find it

useful to use this.
• util.c — various utilities. You should not need to touch. You may or may not want to

use some of these utilities.
• onespot place.c, sequential place.c — these are our dumb placement routines.

They may be useful examples for you on how to work with the netlist and mesh once
you start performing optimizations in subsequent weeks. onespot place.c places all
the LUT blocks in a single island and all the IO in a single IO location; this placement
does not obey the limit on the number of items per island. sequential place.c places
blocks and IOs sequentially. It is careful not to exceed the logic capacity of each island,
however, it does not check the input capacity.

We’ll say more about cplace.c and mesh.c in the writeup for the next assignment as you
need to work with them.

Caveat: The code not borrowed from t-vpack/vpr (mesh code, cplace, dumb placement rou-
tines) was newly written for this assignment. While we have tried to test it, like any recently
developed code it may contain bugs. Let us know if you have any problems. Similarly, we
may need to provide updated source as we fix bugs or add additional functionality.

[2/18/08] Note that the num nets on the s block includes the clock. So, when you are
dealing with a LATCH or LUT AND LATCH, the actual data inputs are [1..num nets-2].

5

ESE535 Spring 2008

Following is the placement generated by sequential place for the sample design example

annotated with delays assuming (Tinter block initial=0.5, Tblock delay=0.1, Tintra block=0.1, Thop=
0.1)

0,1

0,2

0,0 does not exist

3,0 does not exist

1,0 2,0 3,0 does not exist

1,1 2,1

3,1

1,2 2,2

3,2

3,3 does not exist

1,3

2,3

IO

IO IO

IO

IO IO

IO IO

Logic Logic

Logic Logic
bf

a c

df

o9

ff

gf

h

In
pu

t i
10

In
pu

t i
11

pc
lk

ou
tp

ut
 o

9

Input i4

Input i5

Input i6

Input i7

Input i0

Input i1

Input i2

Input i3

0

0

0

0

0 0

0

0

0

00

0

00

ou
tp

ut
 g

f

0.7

0.6

0.6
0.7

0.8

0.9
0.7

0.7

0.8

0.8

1.4
1.5

2.1 2.2

0.6

0.6

0.7

0.7

0.8

0.8

1.6

0.7

References

[1] Vaughn Betz. VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs.
http://www.eecg.toronto.edu/∼vaughn/vpr/vpr.html, March 27 1999. Version 4.30.

[2] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement, and routing tool for
FPGA research. In Wayne Luk, Peter Y. K. Cheung, and Manfred Glesner, editors, Pro-
ceedings of the International Conference on Field-Programmable Logic and Applications,
number 1304 in LNCS, pages 213–222. Springer, August 1997.

6

ESE535 Spring 2008

[3] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,
Norwell, Massachusetts, 02061 USA, 1999.

7

