Problem: Place the following in 1D.

$$
\begin{gathered}
\mathrm{A}=\mathrm{i} 0+\mathrm{i} 1 \\
\mathrm{~B}=\mathrm{i} 1+\mathrm{i} 2 \\
\mathrm{C}=\mathrm{i} 2+\mathrm{i} 3 \\
\mathrm{G}=\mathrm{A} * \mathrm{~B} \\
\mathrm{H}=\mathrm{B}^{*} \mathrm{C} \\
\mathrm{O}=\mathrm{G}+\mathrm{H}
\end{gathered}
$$

Assume i0, i1 enter from left side, i2, i3 enters from right, and O exits to the right.

What is the:

- Channel Width
- Wire Length
- Squared Wire Length
- Critical Path Length (assuming gates cost unit delay and its costs unit delay to cross each position)

