Consider the following Routing Graph:

1. For each of the following connection, list all possible Paths:

Connection	Src	Stg 1	Stg 2	Dst
$A \rightarrow A^{\prime}$	A			A^{\prime}
	A			A^{\prime}
	A			A^{\prime}
$B \rightarrow B^{\prime}$	B			B^{\prime}
	B			B^{\prime}
	B			B^{\prime}
$C \rightarrow C^{\prime}$	C			C^{\prime}
	C			C^{\prime}
	C			C^{\prime}

2. Identify one path for each connection such that the three connections can be made simultaneously.

Connection	Src	Stg 1	Stg 2	Dst
$A \rightarrow A^{\prime}$	A			A^{\prime}
$B \rightarrow B^{\prime}$	B			B^{\prime}
$C \rightarrow C^{\prime}$	C			C^{\prime}

3. Assuming the mux selects the top data input when its control input is a 0 and the bottom input when its control input is a 1, give the configuration bits necessary to realize the connection pattern above.

| c 1 | c 2 | c 3 | c 4 | c 5 | c 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

