1. Consider the logical expression:

$$
Y=a b c f+a b d f+a b e f+a b c g+a b d g+a b e g
$$

(a, b, c, d, e, f, g are boolean variables; this is a sum-of-products expression.)
(a) Is this in minimum sum-of-products form?
(if not, reduce to minimum-sum-of-products; how many Pterms?)
(b) If you implement directly with 2 -input gates (assume can have any two-input gate), how many gates are required to implement this function? \square
(c) Optimize the expression to reduce the number of 2-input gates required.
i. Provide the optimized expression. \square
ii. How many gates are required for your optimized solution? \square
2. Consider the n-input parity calculation:

$$
Y=a_{1} \oplus a_{2} \oplus a_{3} \oplus \ldots a_{n}
$$

(\oplus is the exclusive-OR function: $a \oplus b=a / b+/ a b$.)
(a) How many Pterms would it require to implement this? \square (answer is a function of n)
(b) Assuming you try to minimize the number of 2-input gates, how many two-input gates are required? \square

