ESE535: Electronic Design Automation

Day 10: February 27, 2008

Partitioning 2
(spectral, network flow, replication)

enn ESE525 Spring 2008 -- DeHor

Today

- · Alternate views of partitioning
- · Two things we can solve optimally
 - (but don't exactly solve our original problem)
- Techniques
 - Linear Placement w/ squared wire lengths
 - Network flow MinCut

enn ESE525 Spring 2008 -- DeHon

Optimization Target • Place cells • In linear arrangement • Wire length between connected cells: - distance=X_i - X_j - cost is sum of distance squared Pick X_i's to minimize cost

Why this Target? • Our preferred targets are discontinuous and discrete • Cannot formulate analytically • Not clear how to drive toward solution - Does reducing the channel width at a non-bottleneck help or not? - Does reducing a non-critical path help or not?

Spectral Ordering

Minimize Squared Wire length -- 1D layout

- Start with connection array C (ci.i)
- "Placement" Vector X for x_i placement
- Problem:
 - -Minimize cost = $0.5^*\Sigma$ (all i,j) $(x_i x_j)^2 c_{i,j}$
 - cost sum is XTBX
 - B = D-C
 - D=diagonal matrix, $d_{i,i} = \Sigma(\text{over j}) c_{i,j}$

enn ESE525 Spring 2008 -- DeHon

Spectral Ordering

- Constraint: XTX=1
 - prevent trivial solution all x_i's =0
- Minimize cost=XTBX w/ constraint
 - minimize $L=X^TBX-\lambda(X^TX-1)$
 - $-\partial L/\partial X=2BX-2\lambda X=0$
 - $-(B-\lambda I)X=0$
 - $-X \rightarrow$ Eigenvector of B
 - cost is Eigenvalue λ

Penn ESE525 Spring 2008 -- DeHon

Spectral Solution

- Smallest eigenvalue is zero
 - Corresponds to case where all x_i's are the same →uninteresting
- Second smallest eigenvalue (eigenvector) is the solution we want

Penn ESE525 Spring 2008 -- DeHor

Spectral Ordering

- X (x_i's) continuous
- · use to order nodes
 - real problem wants to place at discrete locations
 - this is one case where can solve ILP from LP
 - Solve LP giving continuous xi's
 - then move back to closest discrete point

Penn ESE525 Spring 2008 -- DeHon

Spectral Ordering Option

- With iteration, can reweigh connections to change cost model being optimized
 - linear
 - (distance)1.X
- Can encourage "closeness"
 - by weighting connection between nodes
 - Making c_{i,i} larger
 - (have to allow some nodes to not be close)

Penn ESE525 Spring 2008 -- DeHon

Spectral Partitioning

- · Can form a basis for partitioning
- Attempts to cluster together connected components
- · Form cut partition from ordering
 - E.g. Left half of ordering is one half, right half is the other

11

enn ESE525 Spring 2008 -- DeHon

Spectral Ordering

 Midpoint bisect isn't necessarily best place to cut, consider:

enn ESE525 Spring 2008 -- DeHon

Fanout

- How do we treat fanout?
- As described assumes point-to-point nets
- For partitioning, pay price when cut something once
 - I.e. the accounting did last time for KLFM
- Also a discrete optimization problem
 - Hard to model analytically

Penn ESE525 Spring 2008 -- DeHor

13

15

Spectral Fanout

- Typically:
 - Treat all nodes on a single net as fully connected
 - Model links between all of them
 - Weight connections so cutting in half counts as cutting the wire
 - Threshold out high fanout nodes
 - If connect to too many things give no information

Penn ESE525 Spring 2008 -- DeHon

14

Spectral Partitioning Options

- · Can bisect by choosing midpoint
 - (not strictly optimizing for minimum bisect)
- Can relax cut critera
 - min cut w/in some δ of balance
- Ratio Cut
 - minimize (cut/|A||B|)
 - idea tradeoff imbalance for smaller cut
 - more imbalance →smaller |A||B|
 - so cut must be much smaller to accept
- Circular bisect/relaxed/ratio cut
 - wrap into circle and pick two cut points
 - How many such cuts?

Penn ESE525 Spring 2008 -- DeHon

Improving Spectral

- More Eigenvalues
 - look at clusters in n-d space
 - But: 2 eigenvectors is not opt. solution to 2D placement
 - 5--70% improvement over EIG1

Spectral Note

- Unlike KLFM, attacks global connectivity characteristics
- Good for finding "natural" clusters
 - hence use as clustering heuristic for multilevel algorithms

enn ESE525 Spring 2008 -- DeHon

Spectral Theory

- There are conditions under which spectral is optimal [Boppana/FOCS28 (1987)]
 - B=A+diag(d)
 - $-g(G,d)=[sum(B)-n*\lambda(B_S)]/4$
 - B_S mapping Bx to closest point on S
 - $-h(G) = \max d g(G,d)$
- h(G) lower bound on cut size

Penn ESE525 Spring 2008 -- DeHon

19

Spectral Theory

- Boppana paper gives a probabilistic model for graphs
 - model favors graphs with small cuts
 - necessary since *truly* random graph has cut size O(n)
 - shows high likelihood of bisection being lower bound
- In practice
 - known to be very weak for graphs with large cuts

Penn ESE525 Spring 2008 -- DeHon

20

Max Flow

MinCut

Penn ESE525 Spring 2008 -- DeHon

MinCut Goal

- Find maximum flow (mincut) between a source and a sink
 - no balance guarantee

Penn ESE525 Spring 2008 -- DeHon

22

MaxFlow

- Set all edge flows to zero
 - F[u,v]=0
- While there is a path from s,t
 - (breadth-first-search)
 - for each edge in path f[u,v]=f[u,v]+1
 - f[v,u]=-f[u,v]
 - When c[v,u]=f[v,u] remove edge from search
- O(|E|*cutsize)
- [Our problem simpler than general case CLR]

enn ESE525 Spring 2008 -- DeHon

3

Technical Details

- For min-cut in graphs,
 - Don't really care about directionality of cut
 - Just want to minimize wire crossings
- Fanout
 - Want to charge discretely ...cut or not cut
- Pick start and end nodes?

Penn ESE525 Spring 2008 -- DeHon

Extend to Balanced Cut

- · Pick a start node and a finish node
- · Compute min-cut start to finish
- · If halves sufficiently balanced, done
- - collapse all nodes in smaller half into one node
 - pick a node adjacent to smaller half
 - collapse that node into smaller half
 - repeat from min-cut computation

FBB -- Yang/Wong ICCAD'94

ESE525 Spring 2008 -- DeHon

Observation

- · Can use residual flow from previous cut when computing next cuts
- · Consequently, work of multiple network flows is only O(|E|*final_cut_cost)

enn ESE525 Spring 2008 -- DeHon

Picking Nodes

- Optimal:
 - would look at all s,t pairs
 - Just for first cut is merely N-1 "others"
 - -...N/2 to guarantee something in second half
 - Anything you pick **must** be in separate halves
 - · Assuming thereis perfect/ideal bisection
 - If pick randomly, probability in different halves
 - Few random selections likely to yield s,t in different halves
 - would also look at all nodes to collapse into smaller
 - could formulate as branching search

enn ESE525 Spring 2008 -- DeHon

Picking Nodes

- Randomly pick
 - (maybe try several starting points)
- With small number of adjacent nodes,
 - could afford to branch on all

Penn ESE525 Spring 2008 -- DeHo

31

Approximation

- Can find 1/3 balanced cuts within O(log(n)) of best cut in polynomial time
 - algorithm due to Leighton and Rao
 - exposition in Hochbaum's Approx. Alg.
- · Bound cut size
 - Boppana -- lower bound h(G)
 - Boppana/Spectral cut -- one upper bound
 - Leighton/Rao -- upper bound

Penn ESE525 Spring 2008 -- DeHon

32

Min Cut Replication

- Noted last time could use replication to reduce cut size
 - Observed could use FM to replicate
- Can solve unbounded replication optimally with mincut

[Liu,Kuo,Cheng TRCAD v14n5p623]

Min-Cut Replication

- Key Idea:
 - Create two copies of net
 - · Connect super src/sink to both
 - reverse links on "to" second copy
 - Provide directional "free" links between them
 - Take mincut
 - S=reachable from src; T=reachable from sink
 - R=rest → replication set
 - Allows nodes to be associated with both ends

Penn ESE525 Spring 2008 -- DeHon

Min-cut Example

Penn ESE525 Spring 2008 -- DeHor

Replication Note

- Cut of minimum width is not unique
 - Similar to phenomenon saw in LUT covering with network flow
- Want to identify **minimum** size replication set for given flow
- Can do by reweighing graph and another min-cut
 - Idea: weight on replication connections
 - ullet Minimize cut \to minimize replication set
 - See Mak/Wong TRCAD v16n10p1221

Penn ESE525 Spring 2008 -- DeHon

50

Admin

- Monday reading online
- Homework 3 due Monday

enn ESE525 Spring 2008 -- DeHon

51

Big Ideas

- Divide-and-Conquer
- Techniques
 - flow based
 - numerical/linear-programming based
 - Transformation constructs
- Exploit problems we can solve optimally
 - Mincut
 - Linear ordering

Penn ESE525 Spring 2008 -- DeHon