ESE535: Electronic Design Automation

Day 12: March 4, 2008 Placement II (Simulated Annealing)

Penn ESE535 Spring 2008 -- DeHon

Today

- Placement
- Improving Quality
 - Avoiding local minima
- Technique: Simulated Annealing

enn ESE535 Spring 2008 -- DeHon

Simulated Annealing

- · Physically motivated approach
- · Physical world has similar problems
 - objects/atoms seeking minimum cost arrangement
 - at high temperature (energy) can move around
 - E.g. it melts
 - at low temperature, no free energy to move
 - cool quickly→freeze in defects (weak structure)
 - glass
 - cool slowly→ allow to find minimum cost
 - crystal

Penn ESE535 Spring 2008 -- DeHon

Key Benefit

- · Avoid Local Minima
 - Allowed to take locally non-improving moves in order to avoid being stuck

Penn ESE535 Spring 2008 -- DeHon

Simulated Annealing

- At high temperature can move around
 - not trapped to only make "improving" moves
 - free energy from "temperature" allows exploration of non-minimum states
 - avoid being trapped in local minima
- As temperature lowers
 - less energy available to take big, non-minimizing moves
 - more local / greedy moves

Penn ESE535 Spring 2008 -- DeHon

Design Optimization

Components:

- 1. "Energy" (Cost) function to minimize
 - represent entire state, drives system forward
- 2. Moves
 - local rearrangement/transformation of solution
- 3. Cooling schedule
 - initial temperature
 - temperature steps (sequence)
 - time at each temperature

Penn ESE535 Spring 2008 -- DeHon

1

Basic Algorithm Sketch

- · Pick an initial solution
- Set temperature (T) to initial value
- while (T>T_{min})
 - for time at T
 - pick a move at random
 - compute ∆cost
 - · if less than zero, accept
 - else if (RND<e^{-∆cost/T}), accept
 - update T

Penn ESE535 Spring 2008 -- DeHor

Details

- Initial Temperature
 - $-T_0 = \Delta avg/ln(P_{accept})$
 - -e-∆cost/T
 - $-e^{-\Delta \cos t/T0} = e^{-\Delta \cos t/(\Delta avg/ln(Paccept))}$
 - –Average move → e^{ln(Paccept)}
 - Assume increasing cost is negative ∆avg
 - Accepted with Probability Paccept

Penn ESE535 Spring 2008 -- DeHon

Details

- Cooling schedule
 - fixed ratio: $T=\lambda T$
 - (e.g. λ=0.85)
 - temperature dependent
 - function of both temperature and acceptance rate
 - example to come
- Time at each temperature
 - fixed number of moves?
 - fixed number of rejected moves?
 - fixed fraction of rejected moves?

Penn ESE535 Spring 2008 -- DeHon

VPR Cooling Schedule

- Moves at Temperature = cN^{4/3}
- Temperature Update
 - Tnew=Toldxγ
 - Idea: advance slowly in good α range
 - $\begin{tabular}{l} \square α is measured\\ acceptance rate \end{tabular}$

Betz, Rose, & Marquardt Kluwer 1999

Penn ESE535 Spring 2008 -- DeHon

α	γ
α > 0.96	0.5
0.8 < α ≤ 0.96	0.9
$0.15 < \alpha \le 0.8$	0.95
α ≤ 0.15	0.8

Cost Function

- · Can be very general
 - Combine area, timing, energy, routability...
- Should drive entire solution in right direction
 - reward each good move
- Should be cheap to compute delta costs
 - e.g. FM
 - Ideally O(1)

Penn ESE535 Spring 2008 -- DeHon

Bad Cost Functions

- · Update cost
 - rerun maze route on every move
 - rerun timing analysis
 - E.g. recalculate critical path delay
- · Drive toward solution:
 - size < threshold?
 - Critical path delay

enn ESE535 Spring 2008 -- DeHon

11

12

Example Cost Functions bbx

- Total Wire Length
 - Linear, quadratic...
- Bounding Box (semi-perimeter)
 - Surrogate for routed net length
- · Channel widths
 - probably wants to be more than just width
- Cut width

Penn ESE535 Spring 2008 -- DeHor

13

VPR Wire Costs

• VPR Bounding Box

$$Cost = \sum_{i=1}^{Nets} \left(q(i) \times \left[bb_x(i) + bb_y(i) \right] \right)$$

Swartz, Betz, & Rose FPGA 1998

Original table: Cheng ICCAD 1994

Penn ESE535 Spring 2008 -- DeHon

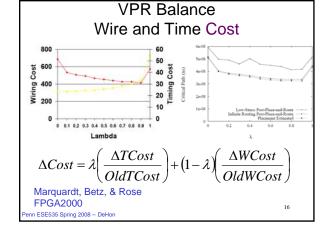
Num Terminals	Correction Factor	Num Terminals	Correction Factor
1~3	1.00	15	1.69
4	1.08	20	1.89
5	1.15	25	2.07
6	1.22	30	2.23
7	1.28	35	2.39
8	1.34	40	2.54
9	1.40	45	2.66
10	1.45	50	2.79

VPR Timing Costs

- Criticality(e)=1-Slack(e)/Dmax
- TCost(e)=Delay(e)*Criticality(e)^{CriticalityExp}
- Keep all edge delays in a table
- Recompute Net Criticality at each Temperature

Criticality Exponent	Estimated Critical Path (ns) (20 Circuit Geometric Average)	Wiring Cost (20 Circuit Geometric Average)
1	38.9	342.0
2	37.1	343.4
3	35.9	344.0
4	34.8	344.7
5	34.7	343.7
6	34.8	341.6
7	34.3	339.6
8	34.3	340.1
9	33.8	339.6
10	34.3	337.9

Marquardt, Betz, & Rose FPGA2000


enn ESE535 Spring 2008 -- DeHon

Initial Solution

- Spectral Placement
- Random
- Constructive Placement
 - Fast placers start at lower temperature; assume constructive got global right.

Penn ESE535 Spring 2008 -- DeHor

17

Moves

- · Swap two cells
 - Within some distance limit? (ex. to come)
- · swap regions
 - ...rows, columns, subtrees, cluster
- rotate cell (when feasible)
- flip (mirror) cell
- permute cell inputs (equivalent inputs)

Penn ESE535 Spring 2008 -- DeHon

Legality Constraints

- · Examples:
 - Limit on number of luts/cluster
 - Limit on number of Inputs/lut cluster
- Options:
 - Force all moves to be legal
 - · Force initial placement to be legal
 - · Illegal moves rejected
 - Allow illegal placement/moves
 - Set cost function to make undesirable
 - Make less desirable (more costly) over time

Variant: "Rejectionless"

- Order moves by cost
 - compare FM
- · Pick random number first
- Use random to define range of move costs will currently accept
- · Pick randomly within this range
- Idea: never pick a costly move which will be rejected

ESE535 Spring 2008 -- DeHon

Theory

- · If stay long enough at each cooling
 - will achieve tight error bound
- If cool long enough
 - will find optimum
- · ...but is it any less work than exhaustive exploration?
 - Good to have a continuum....

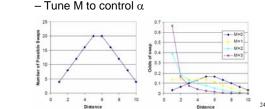
nn ESE535 Spring 2008 -- DeHon

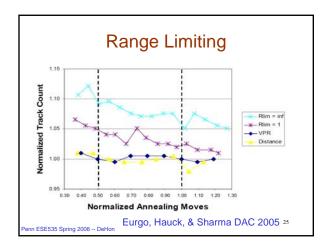
Practice

- · Good results
 - ultimately, what most commercial tools use...what vpr uses...
- Slow convergence
- · Tricky to pick schedules to accelerate convergence
 - Too slow → runs too long
 - Too fast → freezes prematurely→local min
 - → low quality

nn ESE535 Spring 2008 -- DeHon

22


Range Limit


- Want to tune so accepting 44% of the moves - Lam and Delosme DAC 1988
- VPR
 - Define Rlimit defines maximum Δx and ∆y accepted
 - Tune Rlimit to maintain acceptance rate
 - Rlimit^{new}=Rlimit^{old} \times (1-0.44+ α)
 - $\square \alpha$ is measured acceptance rate

nn ESE535 Spring 2008 -- DeHon

Range Limiting?

- Eguro alternate [DAC 2005]
 - define P=D-M
 - Tune M to control α

Big Hammer

- · Costly, but general
- Works for most all problems
 - (part, placement, route, retime, schedule...)
- Can have hybrid/mixed cost functions
 - as long as weight to single potential
 (e.g. wire/time from VPR)
- With care, can attack multiple levels
- place and route
- Ignores structure of problem
 - resignation to finding/understanding structure

n ESE535 Spring 2008 -- DeHon

Summary

- · Simulated Annealing
 - use randomness to explore space
 - accept "bad" moves to avoid local minima
 - decrease tolerance over time
- · General purpose solution
 - costly in runtime

nn ESE535 Spring 2008 -- DeHon

Admin

- · Spring Break next week
- · Monday, March 17 next class
- Reading...

nn ESE535 Spring 2008 -- DeHon

Big Ideas:

- · Use randomness to explore large (nonconvex) space
 - Sample various parts of space
 - Avoid trapped in local minimum
 - Simulated Annealing

enn ESE535 Spring 2008 -- DeHon