ESE535: Electronic Design Automation

Day 13: March 17, 2008
Dual Objective
Dynamic Programming

Penn ESE535 Spring 2008 -- DeHon

Today

- · Cover and Place
 - Linear
 - GAMA
 - · Optimal Tree-based
- Area and Time
 - · covering for
 - ...and linear placement
- Two Dimensional Cover and Place
 - Lily

Penn ESE535 Spring 2008 -- DeHon

Covering Review

- Use dynamic programming to optimally cover trees
 - problem decomposable into subproblems
 - optimal solution to each are part of optimal
 - no interaction between subproblems
 - small number of distinct subproblems
 - single optimal solution to subproblem
- · Break DAG into trees then cover optimally

Penn ESE535 Spring 2008 -- DeHon

Covering Basics

Basic Idea:

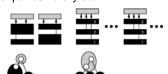
- Assume have optimal solution to all subproblems smaller than current problem
- · try all ways of implementing current root
 - each candidate solution is new gate + previously solve subtrees
 - pick best (smallest area, least delay, least power)

Placement

 How do we integrate placement into this covering process?

Penn ESE535 Spring 2008 -- DeHon

GaMa - Linear Placement


- Problem: cover and place datapaths in rows of FPGA-like cells to minimize area, delay
- Datapath width extends along one dimension (rows)
- Composition is 1D along other dimension (columns)
- · Always covering SIMD row at a time

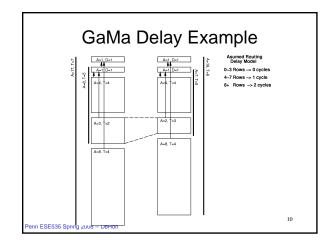
[Callahan/FPGA'98]

Penn ESE535 Spring 2008 -- DeHor

Basic Strategy

- Restrict each subtree to a contiguous set of rows
- Build up placement for subtree during cover
- When consider cover, also consider all sets of arrangements of subtrees
 - effectively expands library set

Simultaneous Placement Benefits


- Know real delay (including routing) during covering
 - make sure critical logic uses fastest inputs
 - ...shortest paths
- Know adjacency
 - can use special resources requiring adjacent blocks

Penn ESE535 Spring 2008 -- DeHor

GaMa Properties

- Operates in time linear in graph size
 - O(|rule set|x|graph nodes|)
- Finds area-optimum for restricted problem
 - trees with contiguous subtrees
- As is, may not find delay optimum

enn ESE535 Spring 2008 -- DeHon

GaMa Delay Problem

- · Area can affect delay
- Doesn't know when to pick worse delay to reduce area
 - make non-critical path subtree slower/smaller
 - so overall critical path will be close later
- · Only tracking single objective
- Fixable as next technique demonstrates

Penn ESE535 Spring 2008 -- DeHon

GaMa Results

- Comparable result quality (area, time) to running through Xilinx tools
- Placement done in seconds as opposed to minutes to hours for Xilinx
 - simulated annealing, etc.
 - not exploiting datapath regularity

enn ESE535 Spring 2008 -- DeHon

Simultaneous Mapping and Linear Placement of Trees

- **Problem:** cover and place standard cell row minimizing area
- · Area: cell width and cut width
- Technique: combine DP-covering with DP-tree layout

[Lou+Salek+Pedram/ICCAD'97]

Penn ESE535 Spring 2008 -- DeHor

nn ESE535 Spring 2008 -- DeHon

Task

• Minimize:

- Area=gate-width * (gate-height+c*wire-pitch)

c x wire-pitch
gate-height

gate-height

Composition Challenge

 Minimum area solution to subproblems does **not** necessarily lead to minimum area solution:

area(s2)=3*(8+2)=30 area(s1+s2)=7*(10)=70 area(s2)=5*(5+2)=35 area(s2)=5*(5+2)=35

13

17

Minimize Area

- Two components of area:
 - gate-area
 - cut-width
- Unclear during mapping when need
 - a smaller gate-area
 - vs. a smaller cut-width
 - at the expense of (local) cell area
 - (same problem as area vs. delay in GaMa)

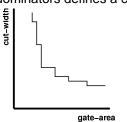
Penn ESE535 Spring 2008 -- DeHon

1

Strategy

- Recognize that these are incomparable objectives
 - neither is strictly superior to other
 - keep all solutions
 - discard only inferior (dominated) solutions

Penn ESE535 Spring 2008 -- DeHon


Dominating/Inferior Solutions

- A solution is **dominated** if there is another solution strictly superior in all objectives
 - - neither dominates
 - - A=3, T=3 is inferior, being dominated by either of the other two solutions

Penn ESE535 Spring 2008 -- DeHon

Non-Inferior Curve

· Set of dominators defines a curve

This is a recurring theme---often prune work using dominator curve

Penn ESE535 Spring 2008 -- DeHon

Strategy

- Keep curve of non-inferior area-cut points
- During DP
 - build a new curve for each subtree
 - by looking at solution set intersections
 - cross product set of solutions from each subtrees feeding into this subtree

Penn ESE535 Spring 2008 -- DeHon

20

Consequences

- More work per graph point
 - keeping and intersecting many points
- Theory: points(fanin) × gates
- Points ≤ range of solutions in smallest dimension
- e.g. points ≤ number of different cut-widths

Penn ESE535 Spring 2008 -- DeHon

Algorithm: Tree Cover+Place

- · For each tree node from leafs
 - For each gate cover
 - For each non-inferior point in fanin-subtrees
 - compute optimal tree layout
 - keep non-inferior points (cutwidth, gatearea)
- Optimal Tree Layout
 - Yannakakis/JACM v32n4p950, Oct. 1985

Penn ESE535 Spring 2008 -- DeHon

22

Time Notes

- Computing Optimal Tree layout: O(Nlog(N))
- Per node: O(cutwidth(fanin) * N*log(N))
- · Loose bound
 - possible to tighten?
 - less points and smaller "N" in tree for earlier subproblems
 - higher fanin→less depth→more use of small "N" for linear layout problems

Penn ESE535 Spring 2008 -- DeHon

Empirical Results

• Claim: 20% area improvement

Penn ESE535 Spring 2008 -- DeHon

Covering for Area and Delay (no placement)

- · Previously saw was hard to do DP to
 - simultaneously optimize for area and delay
 - properly generate area-time tradeoffs
- Problem:
 - whether or not needed a fast path
 - not clear until saw speed of siblings

[Chaudhary+Pedram/DAC'92]

25

Strategy

- Use same technique as just detailed for
 - gate-area + cutwidth
- I.e. -- at each tree cover
 - keep all non-inferior points
 - (effectively the full area-time curve)
 - as cover, intersect area-time curves to generate new area-time curve
- When get to a node
 - can pick smallest implementation for a child node that does not increase critical path

Penn ESE535 Spring 2008 -- DeHon

26

Points to Keep

- · Usually small variance in times
 - if use discrete model like LUT delays, only a small number of different times
 - if use continuous model, can get close to optimum by discretizing and keeping a fixed set
- · Similarly, small total variance in area
 - e.g. factor of 2-3
 - discretizing, gets close w/out giving up much
- · Discretized: run in time linear in N
 - assuming bounded fanin gates

Penn ESE535 Spring 2008 -- DeHon

27

GaMa -- Optimal Delay

- · Use this technique in GaMa
 - solve delay problem
 - get good area-delay tradeoffs
 - GARP has a discrete timing model
 - so already have small spread
 - for conventional FPGA
 - will have to discretize

Penn ESE535 Spring 2008 -- DeHon

28

Covering and Linear Placement for Area and Delay

- Have both
 - cut-width + gate-area affects
 - delay tradeoff
- Result
 - have three objectives to minimize
 - cut-width
 - gate-area
 - gate-delay

[Lou+Salek+Pedram/ICCAD'97]

enn ESE535 Spring 2008 -- DeHo

20

Strategy

- · Repeat trick:
 - keep non-inferior points in three-space
 - <cut-width,gate-area,delay>
 - Intersect spaces to compute new cover spaces
 - May really need to discretize points to limit work

Penn ESE535 Spring 2008 -- DeHon

Note

- · Delay calculation:
 - assumes delay in gates and fanout
 - fanout effect makes heuristic
 - · maybe iterate/relax?
 - ignores distance
- "Optimal" tree layout algorithm being used
 - is optimal with respect to cut-width
 - not optimal with respect to critical path wire length

Penn ESE535 Spring 2008 -- DeHon

31

Empirical Results

- · Mapping for delay:
 - 20% delay improvement
 - achieving effectively same area
 - (of alternative, not of self targeting area)

enn ESE535 Spring 2008 -- DeHon

32

Two Dimensions?

- · Both so far, one-dimensional
- · One-dimensional
 - nice layout restrictions
 - simple metric for delay
 - simple metric for area
- How extend to two dimensions?

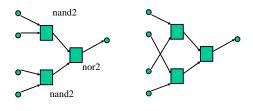
Penn ESE535 Spring 2008 -- DeHon

2D Cover and Place

- Problem: cover and place in 2D to minimize area (delay)
- Area: gate area + "wirelength" area
- Delay: gate delay + estimated wire delay

[Pedram+Bhat/DAC'91]

Penn ESE535 Spring 2008 -- DeHon


Strategy

- · Relax placement during covering
- Initially place unmapped using constructive placement (Day11)
- · Cover via dynamic programming
- When cover a node,
 - fanins already visited
 - calculate new placement
 - Center of Mass...like Force Directed
- Periodically re-calculate placement
- Use estimated/refined placements to get area, delay

Penn ESE535 Spring 2008 -- DeHon

Example

· Covering wrt placement matters

nor2(nand2(A,B),nand2(C,D)) = AND(A,B,C,D)

enn ESE535 Spring 2008 -- DeHon

Incremental Placement

 Place newly covered nodes so as to minimize wire lengths (critical path delay?)

Penn ESE535 Spring 2008 -- DeHo

Empirical Results

- In 1μm
 - 5% area reduction
 - 8% delay reduction
- Not that inspiring
 - ...but this was in the micron era
 - probably have a bigger effect today

Penn ESE535 Spring 2008 -- DeHor

38

Summary

- Can consider placement effects while covering
- Many problems can't find optimum by minimizing single objective
 - delay (area effects)
 - area (cutwidth effects)
- · Can adapt DP to solve
 - keep all non-inferior points
 - can keep polynomial time
 - if very careful, primarily increase constants

Penn ESE535 Spring 2008 -- DeHor

Admin

• Reading?

enn ESE535 Spring 2008 -- DeHon

40

Big Ideas:

- Simultaneous optimization
- · Multi-dimensional objectives
 - dominating points (inferior points)
 - use with dynamic programming
- Exploit stylized problems can solve optimally
- Phase Ordering: estimate/iterate

Penn ESE535 Spring 2008 -- DeHon