

- Cost=
 - W(edge)*delay + (1-W(edge))*congest
 - congest as before
 - (base+history)*f(#signals,time)
- W(edge) = D(edge)/Dmax
 - 1 for edge on critical path critical path
 - -<1 for paths with slack</p>
- Use W(edge) to order routes
- Update critical path and W each round

23

Penn ESE 535 Spring 2008 -- DeHon

26

up congesiton?

Run Time? • Route |E| edges - Each path search $O(|E_{graph}|)$ worst case - ... generally less Iterations? 27 nn ESE 535 Spring 2008 -- DeHon

Summary

- Finding short path easy/well known
- Complication: need to route set of signals
 - who gets which path?
 - Arbitrary decisions earlier limit options later
- Idea: iterate/relax using congestion history
 - update path costs based on congestion
 - Cost adaptive to route
 - reroute with new costs
- Accommodate delay and congestion 47 ESE 535 Spring 2008 -- DeHon

Big Ideas

- Exploit freedom
- Technique:
 - Graph algorithms (BFS, DFS)
 - Search techniques (A*, Alpha-Beta)

49

- Iterative improvement/relaxation
- Adaptive cost refinement

enn ESE 535 Spring 2008 -- DeHon