
1

Penn ESE 535 Spring 2008 -- DeHon
1

ESE535:
Electronic Design Automation

Day 21:  April 21, 2008
Modern SAT Solvers

({z}Chaff, GRASP,miniSAT)

Penn ESE 535 Spring 2008 -- DeHon
2

Today

• SAT 
• Davis-Putnam
• Data Structures
• Optimizations

– Watch2
– VSIDS
– ?restarts

• Learning

Penn ESE 535 Spring 2008 -- DeHon
3

Problem

• SAT: Boolean Satisfiability
• Given: logical formula g in CNF
• Find a set of variable assignments that 

makes g true
• Or conclude no such assignment exists

Penn ESE 535 Spring 2008 -- DeHon
4

CNF

• Conjunctive Normal Form
• Logical AND of a set of clauses

– Product of sums
• Clauses: logical OR of a set of literals
• Literal: a variable or its complement
• E.g.

(A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2008 -- DeHon
5

CNF

• Conjunctive Normal Form
• Logical AND of a set of clauses
• To be satisfied:

– Every clause must be made true

• (A+B+/C)*(/B+D)*(C+/A+/E)
– If know D=false

B must be false

Penn ESE 535 Spring 2008 -- DeHon
6

3-SAT Universal

• Can express any set of boolean
constraints in CNF w/ at most 3 literals 
per clause

• Canonical NP-complete problem



2

Penn ESE 535 Spring 2008 -- DeHon
7

Convert to 3-SAT
• A=/B*/C=/(B+C) universal primitive

– We know can build any logic expression from nor2
• 3-CNF for A=/B*/C

– (A+B+C)*(/A+/B)*(/A+/C)
• If (B==0 && C==0) then A=1
• If (B==1 || C==1) then A=0

• Strategy:
1. Convert to nor2’s

– Or norX if not limited to 3-CNF formulas
2. Then use above to convert nor2 expressions to set of 

clauses
3. Combine the clauses resulting from all the nor’s

Penn ESE 535 Spring 2008 -- DeHon
8

Search

• Can be solved with pruning search
– Pick an unassigned variable
– Branch on true/false
– Compute implications

Penn ESE 535 Spring 2008 -- DeHon
9

Previously

• Also looked at PODEM
– Backtracking search on variable 

assignment 

Penn ESE 535 Spring 2008 -- DeHon
10

Davis-Putnam

while (true) {
if (!decide()) // no unassigned vars

return(satisfiable);
while ( !bcp()) { // constraint propagation

if (!resolveConflict()) // backtrack
return(not satisfiable);

}
}

Penn ESE 535 Spring 2008 -- DeHon
11

decide()
• Picks an unassigned 

variable
• Gives it a value
• Push on decision stack

– Efficient structure for depth-
first search tree

Penn ESE 535 Spring 2008 -- DeHon
12

Data Structures

• Variable “array”
• Clause “DB”

– Each clause is a set of variables
• Decision “stack”



3

Penn ESE 535 Spring 2008 -- DeHon
13

bcp

• What do we need to do on each variable 
assignment?
– Find implications

• Implication when all other literals in a clause are false
• Look through all clauses this assignment effects
• See if any now have all false and one unassigned

– Assign implied values
– Propagate that assignment
– Conflict if get implications for true and false

Penn ESE 535 Spring 2008 -- DeHon
14

bcp()
• Q=new queue();
• Q.insert(top of decision stack); 
• while (!Q.empty())

– V=Q.pop();
– For each clause C in DB with V

• If C has one unassigned literal, rest false
– Vnew=unassigned literal in C
– val=value Vnew must take
– If (Vnew assigned to value other than val)

» return (false); // conflict
– Q.add(Vnew=val);

• return(true)

Penn ESE 535 Spring 2008 -- DeHon
15

Variable array

• Each variable has a list pointing to all 
clauses in which it appears?
– Avoid need to look at every clause

Penn ESE 535 Spring 2008 -- DeHon
16

Tracking Implications

• Each implication made at 
some tree level
– Associated with some 

entry on decision stack
– Has associated decision 

stack height
• On backtrack 

– Unassign implications 
above changed decision 
level

Penn ESE 535 Spring 2008 -- DeHon
17

Track Variable Assignment
• Each clause has counter

– Count number of unassigned literals
– Decrement when assign false literal
– Mark clause as satisfied when assign true

literal (remove from clause database?)

Penn ESE 535 Spring 2008 -- DeHon
18

Track Variable Assignment
• Each clause has 

counter
– Count number of 

unassigned literals
– Decrement when 

assign false literal
– Mark clause as 

satisfied when assign 
true literal (remove 
from clause 
database?)



4

Penn ESE 535 Spring 2008 -- DeHon
19

Track Variable Assignment
• Each clause has counter

– Count number of unassigned literals
– Decrement when assign false literal
– Mark clause as satisfied when assign true

literal
– Watch for counter decrement 2 1

• That’s when a literal is implied.

Penn ESE 535 Spring 2008 -- DeHon
20

resolveConflict()
• What does resolveConflict need to do?

– Look at most recent decision
– If can go other way, switch value

• (clear implications to this depth)
– Else pop and recurse on previous decision
– If pop top decision, 

• Unsatisfiable

• Alternates: 
– Treat literals separately 

• Unassign and pick another literal
– Learning (later in lecture)

• May allow more direct backtracking

Penn ESE 535 Spring 2008 -- DeHon
21

Chaff Optimizations

Penn ESE 535 Spring 2008 -- DeHon
22

How will this perform?

• 10,000’s of variables
• 100,000’s of clauses  (millions)
• Every assignment walks to the clause 

database
• Cache performance?

Penn ESE 535 Spring 2008 -- DeHon
23

Challenge 1

• Currently, visit every clause on each 
assignment
– Clause with K variables
– Visited K-1 times 
– K-2 of which just to discover it’s not the last

• Can we avoid visiting every clause on 
every assignment?
– Every clause in which a variable appears?

Penn ESE 535 Spring 2008 -- DeHon
24

Avoiding Clause Visits
• Idea: watch only 2 variables in each 

clause
• Only care about final set of next to last 

variable
• If set other k-2, won’t force an implication
• When set one of these (and everything 

else set) 
– Then we have an implication



5

Penn ESE 535 Spring 2008 -- DeHon
25

Watch 2 Data Structure

Penn ESE 535 Spring 2008 -- DeHon
26

Avoiding Clause Visits
• Idea: watch only 2 variables in each 

clause
• Only care about final set of next to last 

variable
• What if we set one of these two “watched”

variables?
– If not last, change the watch to one of the 

unset variables

Penn ESE 535 Spring 2008 -- DeHon
27

Watch 2

• If watched literal becomes false
– Check if all non-watched are set

• if so, set implication on other watched
• else, update watch literal

Penn ESE 535 Spring 2008 -- DeHon
28

Note 

• Watch pair is arbitrary
• Unassigning a variable (during 

backtrack)
– Does not require reset of watch set
– Constant time to “unset” a variable

Penn ESE 535 Spring 2008 -- DeHon
29

Challenge 2: Variable Ordering

• How do we decide() which variable to 
use next?
– Want to pick one that facilitates lots of 

pruning 

Penn ESE 535 Spring 2008 -- DeHon
30

Variable Ordering

• Old Ideas:
– Random 
– (DLIS) Dynamic largest individual sum

• Used most frequently in unresolved clauses
• BAD?

– Must re-sort with every variable assignment?
– …none clearly superior

• DLIS competitive
• Rand good on CAD benchmarks?



6

Penn ESE 535 Spring 2008 -- DeHon
31

New: VSIDS

• Variable State Independent Decaying 
Sum
– Each literal has a counter
– When clause added to DB, increment 

counter for each literal
– Select unassigned literal with highest count
– Periodically, all counters are divided by a 

constant 

Penn ESE 535 Spring 2008 -- DeHon
32

New: VSIDS

• Variable State Independent Decaying 
Sum
– Each literal has a counter
– When clause added to DB, increment 

counter for each literal
• Remove clauses when satisfied?
• Reinsert on backtrack

– Select unassigned literal with highest count
– Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2008 -- DeHon
33

New: VSIDS

• Variable State Independent Decaying 
Sum
– Each literal has a counter
– When clause added to DB, increment counter for 

each literal
– Select unassigned literal with highest count

• Don’t need to re-sort each selection
• Only re-sort on backtrack
• Maybe priority queue insert?

– Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2008 -- DeHon
34

VSIDS

• Goal: satisfy recent conflict clauses
• Decaying sum weights things being 

added
– Clauses not conflicting for a while, have 

values reduced
• (? Avoid walking through them by increasing 

weight on new stuff rather than decreasing all 
old?)

• Impact: order of magnitude speedup

Penn ESE 535 Spring 2008 -- DeHon
35

Restarts

• Periodically restart
– Clearing the state of all variables 

• i.e. clear decision stack
– Leave clauses in clause database

• ? Keep ordering based on recent costs
• ? Re-insert clauses must reinsert on restart?

– State of clause database drives variable 
ordering

• Benefit: new variable ordering based on 
lessons of previous search

Penn ESE 535 Spring 2008 -- DeHon
36

Overall

• Two orders of magnitude benefit on 
unsatisfiable instances

• One order of magnitude on satisfiable
instances



7

Penn ESE 535 Spring 2008 -- DeHon
37

Learning

Penn ESE 535 Spring 2008 -- DeHon
38

Learning

• When encounter a conflict
– Determine variable assignment 

contributing to conflict
– Add new clause to database

• New clause allows pruning

Penn ESE 535 Spring 2008 -- DeHon
39

Davis-Putnam w/ Learning

while (true) {
if (!decide()) // no unassigned vars

return(satisfiable);
while ( !bcp()) { // constraint propagation

analyzeConflicts(); // learning
if (!resolveConflict()) // backtrack

return(not satisfiable);
}

}

Penn ESE 535 Spring 2008 -- DeHon
40

Implication Graph

• As perform bcp propagation
– When set variable, insert back link to 

previous variable set forcing this variable 
set

– Graph captures what this implication 
depends upon

• When encounter a conflict
– Identify what variable values caused

Penn ESE 535 Spring 2008 -- DeHon
41

Example

Marques-Silva/Sakallah TRCOMP v48n5p506 1999

Penn ESE 535 Spring 2008 -- DeHon
42

Conflict Resolution

• x1 & /x9 & /x10 & /x11 lead to conflict
• /(x1 & /x9 & /x10 & /x11)
• /x1+x9+x10+x11     new clause for DB



8

Penn ESE 535 Spring 2008 -- DeHon
43

New Clause

•New clause 
does not include 
x12, x13
•May encounter 
this case again

/x1+x9+x10+x11     new clause for DB

Penn ESE 535 Spring 2008 -- DeHon
44

More Implications

• x4 & /x10 & /x11 lead to conflict
• /x4+x10+x11     new clause for DB
• Also (/x1+x9+x4) since x1*/x9 x4

Penn ESE 535 Spring 2008 -- DeHon
45

Unique Implication Point

• UIP = vetext that dominates verticies leading to 
conflict
– x1 is UIP (decision variable causing is always a UIP)
– x4 is UIP

Penn ESE 535 Spring 2008 -- DeHon
46

New Clauses

•/x4+x10+x11
•Doesn’t 
depend on x9

•(/x1+x9+x4)
•x4 not in 
decision tree

•Will be useful 
for later pruning

Penn ESE 535 Spring 2008 -- DeHon
47

Clause Tradeoff

• Adding clauses facilitates implications
– Increases pruning
– Must make less decisions

• Adding clauses increases size of clause 
database
– Increases memory
– Could add exponential clauses
– Forces more work to push implications

Penn ESE 535 Spring 2008 -- DeHon
48

Learned Clauses

• Runtime = Decisions * ImplicationTime
– Decisions decreasing
– Implication Time increasing

• Starting from 0 learned clauses,
– Net decrease in runtime

• Eventually, Implication Time too large and slows 
down

• Optimum with limited number of learned clauses



9

Penn ESE 535 Spring 2008 -- DeHon
49

Limiting Learned Clauses

• Filter out dominated clauses
• Keep smaller clauses (fewer literals)

– Have most relevance
• zChaff study suggest inserting only UIP 

closest to conflict [Zhang et al., ICCAD2001]
• Treat like cache and evict learned clauses

– Use activity statistics as with variables so keep 
most useful clauses [minisat 1.2]

Penn ESE 535 Spring 2008 -- DeHon
50

(Recall) Restarts

• Periodically restart
– Clearing the state of all variables 

• i.e. clear decision stack
– Leave clauses in clause database
– State of clause database drives variable 

ordering
• Benefit: new variable ordering based on 

lessons of previous search

Penn ESE 535 Spring 2008 -- DeHon
51

Impact of Learning

• zChaff [ICCAD2001] showed 2x 
improvement based on tuning the 
learning scheme

• Learning can be orders of magnitude 
benefit

Penn ESE 535 Spring 2008 -- DeHon
52

Impact of Learning

Marques-Silva/Sakallah TRCOMP v48n5p506 1999

Penn ESE 535 Spring 2008 -- DeHon
53

Admin

• Reading
• Assignment 7 out Wednesday

Penn ESE 535 Spring 2008 -- DeHon
54

Big Ideas

• Exploit Structure
– Constraint propagation
– Pruning search technique
– Learning (discover structure)

• Constants matter
– Exploit hierarchy in modern memory 

systems


