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ESE535:
Electronic Design Automation

Day 22:  April 23, 2008
FSM Equivalence Checking
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Today

• Sequential Verification
– DFA equivalence
– Issues

• Extracting STG
• Valid state reduction
• Incomplete Specification

– Solutions
• State PODEM
• State/path exploration
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Motivation

• Write at two levels
– Java prototype and VHDL implementation
– VHDL specification and gate-level 

implementation
• Write at high level and 

synthesize/optimize
– Want to verify that synthesis/transforms did 

not introduce an error
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Cornerstone Result
• Given two DFA’s, can test their 

equivalence in finite time
• N.B.:

– Can visit all states in a DFA with finite input 
strings

• No longer than number of states
• Any string longer must have visited some state 

more than once (by pigeon-hole principle)
• Cannot distinguish any prefix longer than 

number of states from some shorter prefix 
which eliminates cycle (pumping lemma)
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FSM Equivalence

• Given same sequence of inputs
– Returns same sequence of outputs

• Observation means can reason about 
finite sequence prefixes and extend to 
infinite sequences which DFAs (FSMs) 
are defined over
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Equivalence

• Brute Force:
– Generate all strings of length |state|

• (for larger DFA)
– Feed to both DFAs
– Observe any differences?
– |Alphabet|states
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Smarter

• Create composite DFA
• XOR together acceptance of two DFAs

in each composite state
• Ask if the new machine accepts 

anything
– Anything it accepts is a proof of non-

equivalence
– Accepts nothing equivalent
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Composite DFA

• Assume know start state for each DFA
• Each state in composite is labeled by the pair 

{S1i, S2j}
– At most product of states

• Start in {S10, S20} 
• For each symbol a, create a new edge:

– T(a,{S10, S20}) {S1i, S2j} 
• If T1(a, S10) S1i, and T2(a, S20) S2j

• Repeat for each composite state reached
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Composite DFA

• At most |alphabet|*|State1|*|State2| 
edges == work

• Can group together original edges
– i.e. in each state compute intersections of 

outgoing edges
– Really at most |E1|*|E2|
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Acceptance

• State {S1i, S2j} is an accepting state iff
– State S1i accepts and S2j does not accept
– State S1i does not accept and S2j accepts

• If S1i and S2j have the same acceptance for 
all composite states, it is impossible to 
distinguish the machines 
– They are equivalent

• A state with differing acceptance 
– Implies a string which is accepted by one machine 

but not the other
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Empty Language

• Now that we have a composite state 
machine, with this acceptance

• Question: does this composite state 
machine accept anything?  
– Is there a reachable state which accepts 

the input?
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Answering Empty Language

• Start at composite start state {S10, S20} 
• Search for path to an Accepting state
• Use any search (BFS, DFS)
• End when find accepting state

– Not equivalent
• OR when have explored entire 

reachable graph w/out finding
– Are equivalent
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Reachability Search

• Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

• Actually, should be able to find during 
composite construction
– If only follow edges which fill-in as search
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Example

s3 s4

0

s0

s1 s2

0 1

1 0 1

101

0

q0

q1 q2

0 1

0 1 0 1

= accept state
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Issues to Address

• Get State-Transition Graph from 
– RTL, Logic

• Incompletely specified FSM?
• Know valid (possible) states?
• Know start State for Logic?
• Computing the composite FSM may be 

large
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Getting STG Verilog/VHDL

• Gather up logic to wait  statement
– Make one state

• Split states (add edges) on if/else, 
select

• Backedges with while/for
– Branching edges on loop conditions

• Start state is first state at beginning of 
code.
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Getting STG from Logic

• Brute Force
– For each state

• For each input minterm
– Simulate/compute output
– Add edges

– Compute set of states will transition to
• Smarter

– Use modified PODEM to justify outputs and 
next state

• Exploit cube grouping, search pruning
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PODEM state extraction

• Search for all reachable states
– Don’t stop once find one output
– Keep enumerating and generating possible 

outputs



4

Penn ESE 535 Spring 2008 -- DeHon
19

Delay Computation

• Modification of a testing routine
– used to justify an output value for a circuit

• PODEM
– backtracking search to find a suitable input 

vector associated with some target output
– Simply a branching search with implication 

pruning
• Heuristic for smart variable ordering

Day 7
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Incomplete State Specification

• Add edge for unspecified transition to 
– Single, new, terminal state

• Reachability of this state may indicate 
problem
– Actually, if both transition to this new state 

for same cases
• Might say are equivalent
• Just need to distinguish one machine in this 

state and other not
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Valid States

• PODEM justification finds set of 
possibly reachable states

• Composite state construction and 
reachability further show what’s 
reachable

• So, end up finding set of valid states
– Not all possible states from state bits
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Start State for Logic

• Start states should output same thing 
between two FSMs

• Start search with state set {S10, S2i} for 
all S2i with same output as S10

• Use these for acceptance 
(contradiction) reachability search
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Memory?

• Concern for size of search space
– Product set of states
– Nodes in search space

• Combine
– Generation
– Reachability
– State justification/enumeration
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Composite Algorithm
• PathEnumerate(st, path, ValStates)

– // st is a state of M1
– ValStates+=st
– While !(st.enumerated)

• Edge=EnumerateStateFanout(st) // PODEM
• Simulate Edge on M2

– Equivalent result?   If not return(FAIL)
• If (Edge.FaninState(M1),Edge.FaninState(M2) in Path.Spairs)

– Return(PATH_OK) ;; already visisted/expanded that state
• Else

– ValStates+=Edge.FaninState(M1)
– Path=Path+Edge; Update Path.Spairs
– PathEnuemrate(Edge.FaninState(M1),Path,ValStates)
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Start Composite Algorithm

• PathEnumerate(Start(M1),empty,empty)

• Succeed if complete path search and 
not fail
– Not encounter contradiction
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Admin

• Reading
• Assignment 7
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Big Ideas
• Equivalence

– Same observable behavior
– Internal implementation irrelevant 

• Number/organization of states, encoding of state bits…

• Exploit structure
– Finite DFA … necessity of reconvergent paths
– Pruning Search – group together cubes
– Limit to valid/reachable states

• Proving invariants vs. empirical verification


