
1

Penn ESE 535 Spring 2008 -- DeHon
1

ESE535:
Electronic Design Automation

Day 22: April 23, 2008
FSM Equivalence Checking

Penn ESE 535 Spring 2008 -- DeHon
2

Today

• Sequential Verification
– DFA equivalence
– Issues

• Extracting STG
• Valid state reduction
• Incomplete Specification

– Solutions
• State PODEM
• State/path exploration

Penn ESE 535 Spring 2008 -- DeHon
3

Motivation

• Write at two levels
– Java prototype and VHDL implementation
– VHDL specification and gate-level

implementation
• Write at high level and

synthesize/optimize
– Want to verify that synthesis/transforms did

not introduce an error

Penn ESE 535 Spring 2008 -- DeHon
4

Cornerstone Result
• Given two DFA’s, can test their

equivalence in finite time
• N.B.:

– Can visit all states in a DFA with finite input
strings

• No longer than number of states
• Any string longer must have visited some state

more than once (by pigeon-hole principle)
• Cannot distinguish any prefix longer than

number of states from some shorter prefix
which eliminates cycle (pumping lemma)

Penn ESE 535 Spring 2008 -- DeHon
5

FSM Equivalence

• Given same sequence of inputs
– Returns same sequence of outputs

• Observation means can reason about
finite sequence prefixes and extend to
infinite sequences which DFAs (FSMs)
are defined over

Penn ESE 535 Spring 2008 -- DeHon
6

Equivalence

• Brute Force:
– Generate all strings of length |state|

• (for larger DFA)
– Feed to both DFAs
– Observe any differences?
– |Alphabet|states

2

Penn ESE 535 Spring 2008 -- DeHon
7

Smarter

• Create composite DFA
• XOR together acceptance of two DFAs

in each composite state
• Ask if the new machine accepts

anything
– Anything it accepts is a proof of non-

equivalence
– Accepts nothing equivalent

Penn ESE 535 Spring 2008 -- DeHon
8

Composite DFA

• Assume know start state for each DFA
• Each state in composite is labeled by the pair

{S1i, S2j}
– At most product of states

• Start in {S10, S20}
• For each symbol a, create a new edge:

– T(a,{S10, S20}) {S1i, S2j}
• If T1(a, S10) S1i, and T2(a, S20) S2j

• Repeat for each composite state reached

Penn ESE 535 Spring 2008 -- DeHon
9

Composite DFA

• At most |alphabet|*|State1|*|State2|
edges == work

• Can group together original edges
– i.e. in each state compute intersections of

outgoing edges
– Really at most |E1|*|E2|

Penn ESE 535 Spring 2008 -- DeHon
10

Acceptance

• State {S1i, S2j} is an accepting state iff
– State S1i accepts and S2j does not accept
– State S1i does not accept and S2j accepts

• If S1i and S2j have the same acceptance for
all composite states, it is impossible to
distinguish the machines
– They are equivalent

• A state with differing acceptance
– Implies a string which is accepted by one machine

but not the other

Penn ESE 535 Spring 2008 -- DeHon
11

Empty Language

• Now that we have a composite state
machine, with this acceptance

• Question: does this composite state
machine accept anything?
– Is there a reachable state which accepts

the input?

Penn ESE 535 Spring 2008 -- DeHon
12

Answering Empty Language

• Start at composite start state {S10, S20}
• Search for path to an Accepting state
• Use any search (BFS, DFS)
• End when find accepting state

– Not equivalent
• OR when have explored entire

reachable graph w/out finding
– Are equivalent

3

Penn ESE 535 Spring 2008 -- DeHon
13

Reachability Search

• Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

• Actually, should be able to find during
composite construction
– If only follow edges which fill-in as search

Penn ESE 535 Spring 2008 -- DeHon
14

Example

s3 s4

0

s0

s1 s2

0 1

1 0 1

101

0

q0

q1 q2

0 1

0 1 0 1

= accept state

Penn ESE 535 Spring 2008 -- DeHon
15

Issues to Address

• Get State-Transition Graph from
– RTL, Logic

• Incompletely specified FSM?
• Know valid (possible) states?
• Know start State for Logic?
• Computing the composite FSM may be

large

Penn ESE 535 Spring 2008 -- DeHon
16

Getting STG Verilog/VHDL

• Gather up logic to wait statement
– Make one state

• Split states (add edges) on if/else,
select

• Backedges with while/for
– Branching edges on loop conditions

• Start state is first state at beginning of
code.

Penn ESE 535 Spring 2008 -- DeHon
17

Getting STG from Logic

• Brute Force
– For each state

• For each input minterm
– Simulate/compute output
– Add edges

– Compute set of states will transition to
• Smarter

– Use modified PODEM to justify outputs and
next state

• Exploit cube grouping, search pruning

Penn ESE 535 Spring 2008 -- DeHon
18

PODEM state extraction

• Search for all reachable states
– Don’t stop once find one output
– Keep enumerating and generating possible

outputs

4

Penn ESE 535 Spring 2008 -- DeHon
19

Delay Computation

• Modification of a testing routine
– used to justify an output value for a circuit

• PODEM
– backtracking search to find a suitable input

vector associated with some target output
– Simply a branching search with implication

pruning
• Heuristic for smart variable ordering

Day 7

Penn ESE 535 Spring 2008 -- DeHon
20

Incomplete State Specification

• Add edge for unspecified transition to
– Single, new, terminal state

• Reachability of this state may indicate
problem
– Actually, if both transition to this new state

for same cases
• Might say are equivalent
• Just need to distinguish one machine in this

state and other not

Penn ESE 535 Spring 2008 -- DeHon
21

Valid States

• PODEM justification finds set of
possibly reachable states

• Composite state construction and
reachability further show what’s
reachable

• So, end up finding set of valid states
– Not all possible states from state bits

Penn ESE 535 Spring 2008 -- DeHon
22

Start State for Logic

• Start states should output same thing
between two FSMs

• Start search with state set {S10, S2i} for
all S2i with same output as S10

• Use these for acceptance
(contradiction) reachability search

Penn ESE 535 Spring 2008 -- DeHon
23

Memory?

• Concern for size of search space
– Product set of states
– Nodes in search space

• Combine
– Generation
– Reachability
– State justification/enumeration

Penn ESE 535 Spring 2008 -- DeHon
24

Composite Algorithm
• PathEnumerate(st, path, ValStates)

– // st is a state of M1
– ValStates+=st
– While !(st.enumerated)

• Edge=EnumerateStateFanout(st) // PODEM
• Simulate Edge on M2

– Equivalent result? If not return(FAIL)
• If (Edge.FaninState(M1),Edge.FaninState(M2) in Path.Spairs)

– Return(PATH_OK) ;; already visisted/expanded that state
• Else

– ValStates+=Edge.FaninState(M1)
– Path=Path+Edge; Update Path.Spairs
– PathEnuemrate(Edge.FaninState(M1),Path,ValStates)

5

Penn ESE 535 Spring 2008 -- DeHon
25

Start Composite Algorithm

• PathEnumerate(Start(M1),empty,empty)

• Succeed if complete path search and
not fail
– Not encounter contradiction

Penn ESE 535 Spring 2008 -- DeHon
26

Admin

• Reading
• Assignment 7

Penn ESE 535 Spring 2008 -- DeHon
27

Big Ideas
• Equivalence

– Same observable behavior
– Internal implementation irrelevant

• Number/organization of states, encoding of state bits…

• Exploit structure
– Finite DFA … necessity of reconvergent paths
– Pruning Search – group together cubes
– Limit to valid/reachable states

• Proving invariants vs. empirical verification

