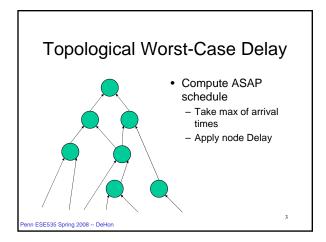
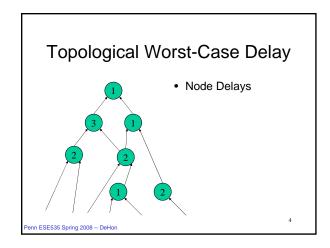
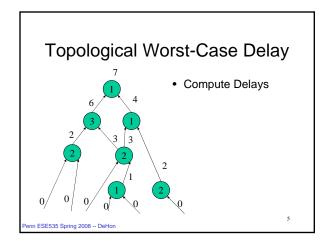
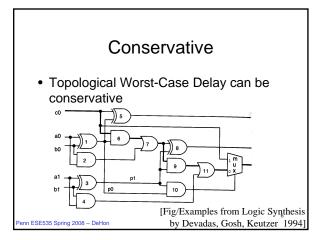
ESE535: Electronic Design Automation

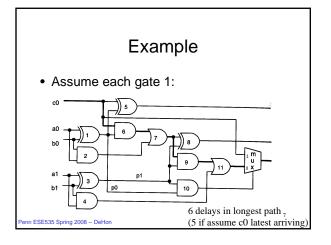
Day 7: February 11, 2008 Static Timing Analysis and Multi-Level Speedup

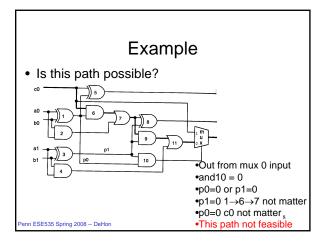

Penn ESE535 Spring 2008 -- DeHor




Today


- Topological Worst Case
 - not adequate (too conservative)
- · Sensitization Conditions
- Timed Calculus
- Delay-justified paths
 - Timed-PODEM
- Speedup


Penn ESE535 Spring 2008 -- DeHon



False Paths

- Once consider logic for nodes
 - There are logical constraints on data values
- There are paths which cannot logically occur
 - Call them false paths

enn ESE535 Spring 2008 -- DeHon

What can we do?

- · Need to assess what paths are real
- Brute force
 - for every pair of inputs
 - compute delay in outputs from in1→in2 input transition
 - take worst case
- Expensive:
 - 22n delay traces

Penn ESE535 Spring 2008 -- DeHon

Alternately

- Look at single vector and determine what controls delay of circuit
 - I.e. look at values on path and determine path sensitized to change with input

enn ESE535 Spring 2008 -- DeHon

Controlled Inputs

- Controlled input to a gate:
 - input whose value will determine gate output
 - e.g.
 - 0 on a AND gate
 - 1 on a OR gate

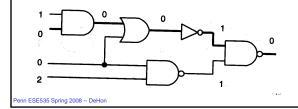
Penn ESE535 Spring 2008 -- DeHon

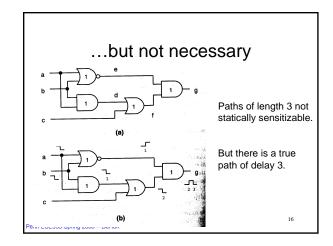
11

12

10

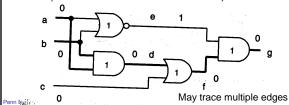
Static Sensitization

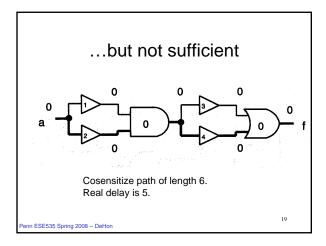

- A path is statically sensitized
 - if all the side (non-path) inputs are noncontrolling
 - I.e. this path value flips with the input


Penn ESE535 Spring 2008 -- DeHor

Sufficiency

13


• Static Sensitization is **sufficient** for a path to be a **true** path in circuit


Static Co-sensitization

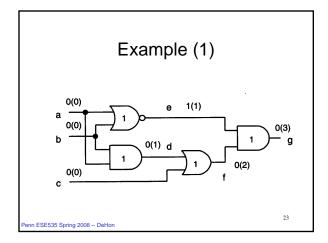
- Each output with a controlled value
 - has a controlling value as input on path
 - (and vice-versa for non-controlled)

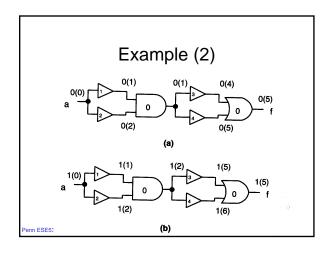
Necessary • Static Co-sensitization is a necessary condition for a path to be true

0

Combining

 Combine these ideas into a timedcalculus for computing delays for an input vector


Penn ESE535 Spring 2008 -- DeHon


Computing Delays AND Timing Calculus (a) (b) (c) (c) (d) (d) (e) (e) Penn ESE535 Spring 2008 -- Decripting

Rules

- If gate output is at a controlling value, pick the minimum input and add gate delay
- If gate output is at a non-controlling value, pick the maximum input and add gate delay

Penn ESE535 Spring 2008 -- DeHon

Now...

- We know how to get the delay of a single input condition
- · Could:
 - find critical path
 - search for an input vector to sensitize
 - if fail, find next path
 - ...until find longest true path
- May be O(2n)

Penn ESE535 Spring 2008 -- DeHon

Better Approach

- Ask if can justify a delay greater than T
- · Search for satisfying vector
 - ...or demonstration that none exists
- · Binary search to find tightest delay

Penn ESE535 Spring 2008 -- DeHon

26

Delay Computation

- · Modification of a testing routine
 - used to justify an output value for a circuit
- PODEM
 - backtracking search to find a suitable input vector associated with some target output
 - Simply a branching search with implication pruning
 - · Heuristic for smart variable ordering

Penn ESE535 Spring 2008 -- DeHon

27

25

Search1

- · Takes in list of nodes to satisfy
- If all satisfied → done
- · Backtrace to set next PI
- if inconsistent PI value
 - try inverting this PI call Search2
- else
 - search to set next PI
 - if fail

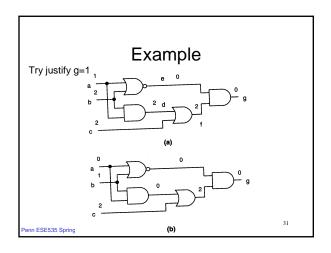
• try inverting and Search2
Penn ESE535 Spring 2008 – DeHon

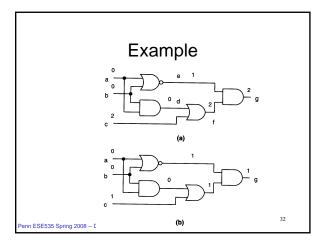
20

Search2

- ;; same idea, but this one not flip bit
- ;; because already tried inverted value
- · If no conflict
 - search to set next PI
- otherwise
 - pass back failure

Penn ESE535 Spring 2008 -- DeHon


29


Backtrace

- Follow back gates w/ unknown values
 - sometimes output dictate input must be
 - (AND needing 1 output; with one input already assigned 1)
 - sometimes have to guess what to follow
 - (OR with 1 output and no inputs set)
 - Uses heuristics to decide what to follow

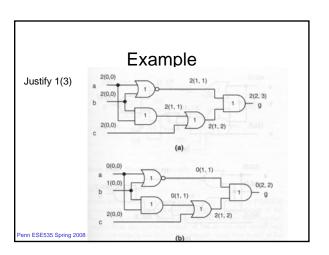
enn ESE535 Spring 2008 -- DeHon

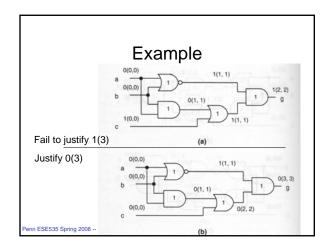
30

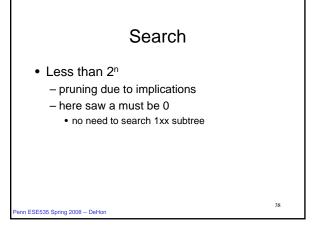
For Timed Justification

- Also want to compute delay
 - on incompletely specified values
- Compute bounds on timing
 - upper bound, lower bound
 - Again, use our timed calculus
 - expanded to unknowns

enn ESE535 Spring 2008 -- DeHon


AND rules			
0	0	0	(
	$MIN(l_1, l_2) + d$	$l_2 + d$	$MIN(l_1, l_2) + d$
	$MIN(u_1, u_2) + d$	$u_2 + d$	$u_2 + a_2 + a_3$
1	0	shahailimen ala ja 1	and the second of the second o
	$l_1 + d$	$MAX(l_1, l_2) + d$	$l_1 + d$
	$u_1 + d$	$MAX(u_1,u_2)+d$	$MAX(u_1, u_2) + \epsilon$
2	0	2	2
	$MIN(l_1, l_2) + d$	$l_2 + d$	$MIN(l_1, l_2) + c$
	$u_1 + d$	$MAX(u_1, u_2) + d$	$MAX(u_1, u_2) + a$


Timed PODEM


- Input: value to justify and delay T
- **Goal:** find input vector which produces value and exceeds delay T
- Algorithm
 - similar
 - implications check timing as well as logic

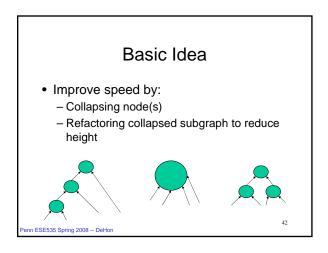
35

enn ESE535 Spring 2008 -- DeHon

Questions

• On static timing analysis?

enn ESE535 Spring 2008 -- DeHon


Speed Up (sketch flavor)

Speed Up

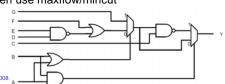
41

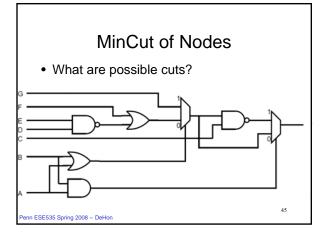
- Start with area optimized network
- Know target arrival times
 - Know delay from static analysis
- Want to reduce delay of node

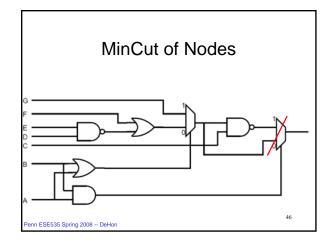
Penn ESE535 Spring 2008 -- DeHon

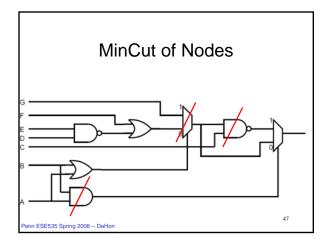
Speed Up

- While (delay decreasing, timing not met)
 - Compute delay (slack)
 - Static timing analysis
 - Generate network close to critical path
 - w/in some delay ε, to some distance d

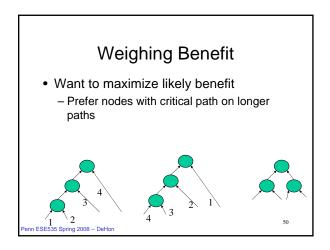

 - Weight nodes in network
 Less weight = more potential to improve, prefer to cut
 Compute mincut of nodes on weighted network
 - For each node in cutset
 - · Partial collapse
 - For each node in cutset
 - Timing redecompose


ESE535 Spring 2008 -- DeHon

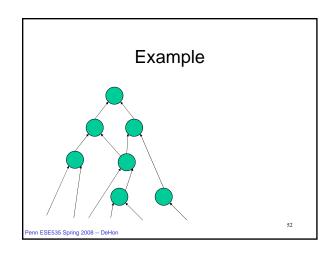

43

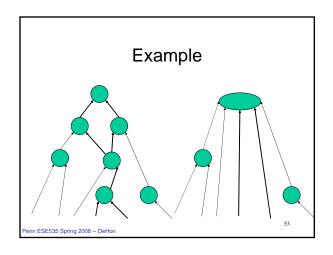

MinCut of Nodes

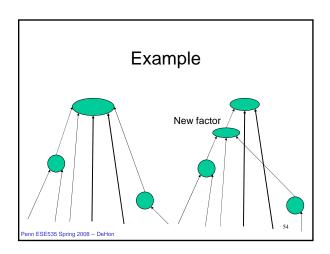
- Cut nodes not edges
 - Typically will need to transform to dual graph
 - All edges become nodes, nodes become edges
 - Then use maxflow/mincut



Weighted Cut


- $W=W_t+\alpha W_a$ $\rightarrow \alpha$ tuning parameter
- · Want to minimize area expansion
 - Things in collapsed network may be duplicated
 - E.g. W_a=literals in duplicated logic
- Want to maximize likely benefit
 - Prefer nodes with varying input times to the "near critical path" network
 - · Quantify: large variance in arrival times
 - Prefer nodes with critical path on longer paths


enn ESE535 Spring 2008 -- DeHon


Weighing Benefit • Want to maximize likely benefit - Prefer nodes with varying input times to the "near critical path" network Penn ESES3S Spring 2008 -- DeHon

Timing Decomposition • Extract area saving kernels that do not include critical inputs to node - f=abcd+abce+abef (last time) - Kernels={cd+ce+ef,e+d,c+f} - F=abe(c+f)+abcd, ab(cd+ce+ef), abc(e+d)+abef - What if: • Critical input is f? d? a? {a,d}? • When decompose (e.g. into nand2's) similarly balance with critical inputs closest to output

Speed Up (review)

- While (delay decreasing, timing not met)
 - Compute delay (slack)
 - Static timing analysis
 - Generate network close to critical path
 - w/in some delay ε, to some distance d

 - Weight nodes in network
 Less weight = more potential to improve, prefer to cut
 - Compute **mincut** of *nodes* on weighted network
 - For each node in cutset
 - · Partial collapse
 - For each node in cutset
 - · timing redecompose

ESE535 Spring 2008 -- DeHon

55

Admin

- Assignment 1 return
- Reading
 - Wed. retiming (handout today)
 - Mon. cover+retime (link on web)
- · Assignment 2 due Monday
- Office hours Tuesday 4pm

nn ESE535 Spring 2008 -- DeHon

Big Ideas

- Topological Worst-case delays are conservative
 - Once consider logical constraints
 - may have false paths
- · Necessary and sufficient conditions on true paths
- Search for paths by delay
 - or demonstrate non existence
- Search with implications
- · Iterative improvement

ESE535 Spring 2008 -- DeHon