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ESE535:
Electronic Design Automation

Day 7:  February 11, 2008
Static Timing Analysis

and Multi-Level Speedup
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Today

• Topological Worst Case
– not adequate (too conservative)

• Sensitization Conditions
• Timed Calculus
• Delay-justified paths 

– Timed-PODEM
• Speedup
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Topological Worst-Case Delay

• Compute ASAP 
schedule  
– Take max of arrival 

times
– Apply node Delay
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Topological Worst-Case Delay
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Topological Worst-Case Delay
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Conservative

• Topological Worst-Case Delay can be 
conservative

[Fig/Examples from Logic Synthesis
by Devadas, Gosh, Keutzer 1994]
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Example

• Assume each gate 1:

6 delays in longest path
(5 if assume c0 latest arriving) Penn ESE535 Spring 2008 -- DeHon
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Example
• Is this path possible?

•Out from mux 0 input
•and10 = 0
•p0=0 or p1=0
•p1=0 1→6→7 not matter
•p0=0 c0 not matter
•This path not feasible
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False Paths

• Once consider logic for nodes
– There are logical constraints on data 

values
• There are paths which cannot logically 

occur
– Call them false paths
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What can we do?

• Need to assess what paths are real
• Brute force

– for every pair of inputs
– compute delay in outputs from in1→in2 

input transition
– take worst case

• Expensive:
– 22n delay traces
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Alternately

• Look at single vector and determine 
what controls delay of circuit
– I.e. look at values on path and determine 

path sensitized to change with input
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Controlled Inputs

• Controlled input to a gate:
– input whose value will determine gate 

output
– e.g.

• 0 on a AND gate
• 1 on a OR gate



3

Penn ESE535 Spring 2008 -- DeHon
13

Static Sensitization

• A path is statically sensitized
– if all the side (non-path) inputs are non-

controlling
– I.e. this path value flips with the input
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Statically Sensitized Path
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Sufficiency

• Static Sensitization is sufficient for a 
path to be a true path in circuit
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…but not necessary

Paths of length 3 not 
statically sensitizable.

But there is a true 
path of delay 3.
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Static Co-sensitization

• Each output with a controlled value
– has a controlling value as input on path
– (and vice-versa for non-controlled)

May trace multiple edges Penn ESE535 Spring 2008 -- DeHon
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Necessary

• Static Co-sensitization is a necessary 
condition for a path to be true
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…but not sufficient

Cosensitize path of length 6.
Real delay is 5.
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Combining

• Combine these ideas into a timed-
calculus for computing delays for an 
input vector
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Computing Delays

AND
Timing
Calculus
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Rules

• If gate output is at a controlling value, 
pick the minimum input and add gate 
delay

• If gate output is at a non-controlling 
value, pick the maximum input and add 
gate delay
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Example (1)
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Example (2)
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Now...

• We know how to get the delay of a 
single input condition

• Could:
– find critical path
– search for an input vector to sensitize
– if fail, find next path
– …until find longest true path

• May be O(2n)
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Better Approach

• Ask if can justify a delay greater than T
• Search for satisfying vector

– …or demonstration that none exists
• Binary search to find tightest delay
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Delay Computation

• Modification of a testing routine
– used to justify an output value for a circuit

• PODEM
– backtracking search to find a suitable input 

vector associated with some target output
– Simply a branching search with implication 

pruning
• Heuristic for smart variable ordering
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Search1
• Takes in list of nodes to satisfy
• If all satisfied done
• Backtrace to set next PI
• if inconsistent PI value

– try inverting this PI call Search2
• else

– search to set next PI
– if fail 

• try inverting and Search2
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Search2

• ;; same idea, but this one not flip bit
• ;;   because already tried inverted value
• If no conflict 

– search to set next PI
• otherwise

– pass back failure
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Backtrace

• Follow back gates w/ unknown values
– sometimes output dictate input must be

• (AND needing 1 output; with one input already 
assigned 1)

– sometimes have to guess what to follow
• (OR with 1 output and no inputs set)
• Uses heuristics to decide what to follow
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Example
Try justify g=1
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Example
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For Timed Justification

• Also want to compute delay
– on incompletely specified values

• Compute bounds on timing
– upper bound, lower bound
– Again, use our timed calculus

• expanded to unknowns
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Delay Calculation
AND rules
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Timed PODEM

• Input: value to justify and delay T
• Goal: find input vector which produces 

value and exceeds delay T
• Algorithm

– similar
– implications check timing as well as logic
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Example
Justify 1(3)
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Example

Fail to justify 1(3)

Justify 0(3)
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Search

• Less than 2n

– pruning due to implications
– here saw a must be 0

• no need to search 1xx subtree
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Questions

• On static timing analysis?
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Speed Up

(sketch flavor)
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Speed Up

• Start with area optimized network
• Know target arrival times

– Know delay from static analysis
• Want to reduce delay of node
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Basic Idea

• Improve speed by:
– Collapsing node(s)
– Refactoring collapsed subgraph to reduce 

height
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Speed Up
• While (delay decreasing, timing not met)

– Compute delay (slack) 
• Static timing analysis

– Generate network close to critical path
• w/in some delay ε, to some distance d

– Weight nodes in network
• Less weight = more potential to improve, prefer to cut

– Compute mincut of nodes on weighted network
– For each node in cutset

• Partial collapse 
– For each node in cutset

• Timing redecompose
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MinCut of Nodes

• Cut nodes not edges
– Typically will need to transform to dual 

graph 
• All edges become nodes, nodes become edges

– Then use maxflow/mincut
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MinCut of Nodes
• What are possible cuts?
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MinCut of Nodes
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MinCut of Nodes
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Weighted Cut

• W=Wt+αWa α tuning parameter
• Want to minimize area expansion

– Things in collapsed network may be duplicated
– E.g. Wa=literals in duplicated logic

• Want to maximize likely benefit
– Prefer nodes with varying input times to the “near 

critical path” network 
• Quantify: large variance in arrival times

– Prefer nodes with critical path on longer paths
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Weighing Benefit
• Want to maximize likely benefit 

– Prefer nodes with varying input times to the 
“near critical path” network 
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Weighing Benefit
• Want to maximize likely benefit 

– Prefer nodes with critical path on longer 
paths  
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4
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Timing Decomposition

• Extract area saving kernels that do not 
include critical inputs to node
– f=abcd+abce+abef (last time)
– Kernels={cd+ce+ef,e+d,c+f}
– F=abe(c+f)+abcd, ab(cd+ce+ef), abc(e+d)+abef
– What if:

• Critical input is f? d? a? {a,d}?

• When decompose (e.g. into nand2’s) similarly 
balance with critical inputs closest to output
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Example
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Example
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Example

New factor
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Speed Up (review)
• While (delay decreasing, timing not met)

– Compute delay (slack) 
• Static timing analysis

– Generate network close to critical path
• w/in some delay ε, to some distance d

– Weight nodes in network
• Less weight = more potential to improve, prefer to cut

– Compute mincut of nodes on weighted network
– For each node in cutset

• Partial collapse 
– For each node in cutset

• timing redecompose
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Admin

• Assignment 1 return
• Reading 

– Wed. retiming (handout today)
– Mon. cover+retime (link on web)

• Assignment 2 due Monday
• Office hours Tuesday 4pm
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Big Ideas
• Topological Worst-case delays are 

conservative
– Once consider logical constraints
– may have false paths

• Necessary and sufficient conditions on 
true paths

• Search for paths by delay
– or demonstrate non existence

• Search with implications
• Iterative improvement


