
1

Penn ESE535 Spring 2008 -- DeHon
1

ESE535:
Electronic Design Automation

Day 7: February 11, 2008
Static Timing Analysis

and Multi-Level Speedup

Penn ESE535 Spring 2008 -- DeHon
2

Today

• Topological Worst Case
– not adequate (too conservative)

• Sensitization Conditions
• Timed Calculus
• Delay-justified paths

– Timed-PODEM
• Speedup

Penn ESE535 Spring 2008 -- DeHon
3

Topological Worst-Case Delay

• Compute ASAP
schedule
– Take max of arrival

times
– Apply node Delay

Penn ESE535 Spring 2008 -- DeHon
4

Topological Worst-Case Delay

1

3

2

1

2

1 2

• Node Delays

Penn ESE535 Spring 2008 -- DeHon
5

Topological Worst-Case Delay

1

3

2

1

2

1 2

• Compute Delays

0 0 0 0 0 0

1

3 3

2

2

46

7

Penn ESE535 Spring 2008 -- DeHon
6

Conservative

• Topological Worst-Case Delay can be
conservative

[Fig/Examples from Logic Synthesis
by Devadas, Gosh, Keutzer 1994]

2

Penn ESE535 Spring 2008 -- DeHon
7

Example

• Assume each gate 1:

6 delays in longest path
(5 if assume c0 latest arriving) Penn ESE535 Spring 2008 -- DeHon

8

Example
• Is this path possible?

•Out from mux 0 input
•and10 = 0
•p0=0 or p1=0
•p1=0 1→6→7 not matter
•p0=0 c0 not matter
•This path not feasible

Penn ESE535 Spring 2008 -- DeHon
9

False Paths

• Once consider logic for nodes
– There are logical constraints on data

values
• There are paths which cannot logically

occur
– Call them false paths

Penn ESE535 Spring 2008 -- DeHon
10

What can we do?

• Need to assess what paths are real
• Brute force

– for every pair of inputs
– compute delay in outputs from in1→in2

input transition
– take worst case

• Expensive:
– 22n delay traces

Penn ESE535 Spring 2008 -- DeHon
11

Alternately

• Look at single vector and determine
what controls delay of circuit
– I.e. look at values on path and determine

path sensitized to change with input

Penn ESE535 Spring 2008 -- DeHon
12

Controlled Inputs

• Controlled input to a gate:
– input whose value will determine gate

output
– e.g.

• 0 on a AND gate
• 1 on a OR gate

3

Penn ESE535 Spring 2008 -- DeHon
13

Static Sensitization

• A path is statically sensitized
– if all the side (non-path) inputs are non-

controlling
– I.e. this path value flips with the input

Penn ESE535 Spring 2008 -- DeHon
14

Statically Sensitized Path

Penn ESE535 Spring 2008 -- DeHon
15

Sufficiency

• Static Sensitization is sufficient for a
path to be a true path in circuit

Penn ESE535 Spring 2008 -- DeHon
16

…but not necessary

Paths of length 3 not
statically sensitizable.

But there is a true
path of delay 3.

Penn ESE535 Spring 2008 -- DeHon
17

Static Co-sensitization

• Each output with a controlled value
– has a controlling value as input on path
– (and vice-versa for non-controlled)

May trace multiple edges Penn ESE535 Spring 2008 -- DeHon
18

Necessary

• Static Co-sensitization is a necessary
condition for a path to be true

4

Penn ESE535 Spring 2008 -- DeHon
19

…but not sufficient

Cosensitize path of length 6.
Real delay is 5.

Penn ESE535 Spring 2008 -- DeHon
20

Combining

• Combine these ideas into a timed-
calculus for computing delays for an
input vector

Penn ESE535 Spring 2008 -- DeHon
21

Computing Delays

AND
Timing
Calculus

Penn ESE535 Spring 2008 -- DeHon
22

Rules

• If gate output is at a controlling value,
pick the minimum input and add gate
delay

• If gate output is at a non-controlling
value, pick the maximum input and add
gate delay

Penn ESE535 Spring 2008 -- DeHon
23

Example (1)

Penn ESE535 Spring 2008 -- DeHon
24

Example (2)

5

Penn ESE535 Spring 2008 -- DeHon
25

Now...

• We know how to get the delay of a
single input condition

• Could:
– find critical path
– search for an input vector to sensitize
– if fail, find next path
– …until find longest true path

• May be O(2n)
Penn ESE535 Spring 2008 -- DeHon

26

Better Approach

• Ask if can justify a delay greater than T
• Search for satisfying vector

– …or demonstration that none exists
• Binary search to find tightest delay

Penn ESE535 Spring 2008 -- DeHon
27

Delay Computation

• Modification of a testing routine
– used to justify an output value for a circuit

• PODEM
– backtracking search to find a suitable input

vector associated with some target output
– Simply a branching search with implication

pruning
• Heuristic for smart variable ordering

Penn ESE535 Spring 2008 -- DeHon
28

Search1
• Takes in list of nodes to satisfy
• If all satisfied done
• Backtrace to set next PI
• if inconsistent PI value

– try inverting this PI call Search2
• else

– search to set next PI
– if fail

• try inverting and Search2

Penn ESE535 Spring 2008 -- DeHon
29

Search2

• ;; same idea, but this one not flip bit
• ;; because already tried inverted value
• If no conflict

– search to set next PI
• otherwise

– pass back failure

Penn ESE535 Spring 2008 -- DeHon
30

Backtrace

• Follow back gates w/ unknown values
– sometimes output dictate input must be

• (AND needing 1 output; with one input already
assigned 1)

– sometimes have to guess what to follow
• (OR with 1 output and no inputs set)
• Uses heuristics to decide what to follow

6

Penn ESE535 Spring 2008 -- DeHon
31

Example
Try justify g=1

Penn ESE535 Spring 2008 -- DeHon
32

Example

Penn ESE535 Spring 2008 -- DeHon
33

For Timed Justification

• Also want to compute delay
– on incompletely specified values

• Compute bounds on timing
– upper bound, lower bound
– Again, use our timed calculus

• expanded to unknowns

Penn ESE535 Spring 2008 -- DeHon
34

Delay Calculation
AND rules

Penn ESE535 Spring 2008 -- DeHon
35

Timed PODEM

• Input: value to justify and delay T
• Goal: find input vector which produces

value and exceeds delay T
• Algorithm

– similar
– implications check timing as well as logic

Penn ESE535 Spring 2008 -- DeHon
36

Example
Justify 1(3)

7

Penn ESE535 Spring 2008 -- DeHon
37

Example

Fail to justify 1(3)

Justify 0(3)

Penn ESE535 Spring 2008 -- DeHon
38

Search

• Less than 2n

– pruning due to implications
– here saw a must be 0

• no need to search 1xx subtree

Penn ESE535 Spring 2008 -- DeHon
39

Questions

• On static timing analysis?

Penn ESE535 Spring 2008 -- DeHon
40

Speed Up

(sketch flavor)

Penn ESE535 Spring 2008 -- DeHon
41

Speed Up

• Start with area optimized network
• Know target arrival times

– Know delay from static analysis
• Want to reduce delay of node

Penn ESE535 Spring 2008 -- DeHon
42

Basic Idea

• Improve speed by:
– Collapsing node(s)
– Refactoring collapsed subgraph to reduce

height

8

Penn ESE535 Spring 2008 -- DeHon
43

Speed Up
• While (delay decreasing, timing not met)

– Compute delay (slack)
• Static timing analysis

– Generate network close to critical path
• w/in some delay ε, to some distance d

– Weight nodes in network
• Less weight = more potential to improve, prefer to cut

– Compute mincut of nodes on weighted network
– For each node in cutset

• Partial collapse
– For each node in cutset

• Timing redecompose

Penn ESE535 Spring 2008 -- DeHon
44

MinCut of Nodes

• Cut nodes not edges
– Typically will need to transform to dual

graph
• All edges become nodes, nodes become edges

– Then use maxflow/mincut

Penn ESE535 Spring 2008 -- DeHon
45

MinCut of Nodes
• What are possible cuts?

Penn ESE535 Spring 2008 -- DeHon
46

MinCut of Nodes

Penn ESE535 Spring 2008 -- DeHon
47

MinCut of Nodes

Penn ESE535 Spring 2008 -- DeHon
48

Weighted Cut

• W=Wt+αWa α tuning parameter
• Want to minimize area expansion

– Things in collapsed network may be duplicated
– E.g. Wa=literals in duplicated logic

• Want to maximize likely benefit
– Prefer nodes with varying input times to the “near

critical path” network
• Quantify: large variance in arrival times

– Prefer nodes with critical path on longer paths

9

Penn ESE535 Spring 2008 -- DeHon
49

Weighing Benefit
• Want to maximize likely benefit

– Prefer nodes with varying input times to the
“near critical path” network

2 2 2
2

1
2 4

3

Penn ESE535 Spring 2008 -- DeHon
50

Weighing Benefit
• Want to maximize likely benefit

– Prefer nodes with critical path on longer
paths

1 2

4
3

4 3
2 1

Penn ESE535 Spring 2008 -- DeHon
51

Timing Decomposition

• Extract area saving kernels that do not
include critical inputs to node
– f=abcd+abce+abef (last time)
– Kernels={cd+ce+ef,e+d,c+f}
– F=abe(c+f)+abcd, ab(cd+ce+ef), abc(e+d)+abef
– What if:

• Critical input is f? d? a? {a,d}?

• When decompose (e.g. into nand2’s) similarly
balance with critical inputs closest to output

Penn ESE535 Spring 2008 -- DeHon
52

Example

Penn ESE535 Spring 2008 -- DeHon
53

Example

Penn ESE535 Spring 2008 -- DeHon
54

Example

New factor

10

Penn ESE535 Spring 2008 -- DeHon
55

Speed Up (review)
• While (delay decreasing, timing not met)

– Compute delay (slack)
• Static timing analysis

– Generate network close to critical path
• w/in some delay ε, to some distance d

– Weight nodes in network
• Less weight = more potential to improve, prefer to cut

– Compute mincut of nodes on weighted network
– For each node in cutset

• Partial collapse
– For each node in cutset

• timing redecompose

Penn ESE535 Spring 2008 -- DeHon
56

Admin

• Assignment 1 return
• Reading

– Wed. retiming (handout today)
– Mon. cover+retime (link on web)

• Assignment 2 due Monday
• Office hours Tuesday 4pm

Penn ESE535 Spring 2008 -- DeHon
57

Big Ideas
• Topological Worst-case delays are

conservative
– Once consider logical constraints
– may have false paths

• Necessary and sufficient conditions on
true paths

• Search for paths by delay
– or demonstrate non existence

• Search with implications
• Iterative improvement

