
ESE535 Spring 2009

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2009 Assignment #1 Wednesday, January 23

Due: Monday, February 2, beginning of class.

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration Please work independently on this assignment.

Writeup Writeup should be in an electronically readable format (HTML or PDF preferred—
I do not want to decipher handwriting or hand-drawn figures). State any assumptions you
need to make.

Problems

1. [2pts] Consider the following C function:

int f(int a, int b, int c, int d)

{

int t;

t=(a+b)+(c+d);

t=t>>2;

a=a-t;

b=b-t;

c=c-t;

d=d-t;

if (a>b) { t=a; a=b; b=t; }

if (c>d) { t=c; c=d; d=t; }

if (b>d) { t=b; b=d; d=t; }

if (a>c) { t=a; a=c; c=t; }

return(d-a);

}

(a) Create the dataflow graph for this function.

(b) What is the critical path length for the resulting dataflow graph?

1



ESE535 Spring 2009

(c) Schedule the dataflow graph onto 3 ALUs.
Assume the ALU has an operation: res←mux(binary condition, A, B) where

• binary condition is a value you have previously computed (not an expression)

• res←A if binary condition is true

• res←B if binary condition is false

2. [2pts] Consider the graph in Figure 1. Assuming this is scheduled onto a device with
5 functional units, each of which takes two cycles to perform an operation:

(a) What is the latency bound?

(b) What is the compute bound?

(c) Show the schedule that results from using the algorithm shown in Figure 2 to
schedule the graph (F = 5, Top = 2). (N.b. This algorithm is not necessarily
good; in fact we have seen better in class. We provide it as a strawman against
which you can compare your better algorithm for the more interesting problem in
the following question.)

3. [5pts] Consider an expanded architecture:

• 5 functional units that take 2 cycles to perform an operation and consume 1 En-
ergy Unit (EU) per cycle.

• 1 functional unit that takes 1 cycle to perform an operation and consumes 4 EUs
per cycle.

• Power constraints that limit you to operations that do not require more than
5 EUs per cycle. (i.e. you can run all 5 “slow” functional units, or you can run 1
fast functional unit and one slow).

(a) How would you calculate the compute bound for this architecture for any dataflow
graph? (This is an equation.)

(b) What is the compute bound for the graph in Figure 1?

(c) How would you calculate the latency bound for this architecture for any dataflow
graph?

(d) What is the latency bound for the graph in Figure 1?

(e) [3pts] Provide a general algorithm to schedule a dataflow graph onto this ar-
chitecture minimizing compute time while obeying the power contraint above.
(Describe in psuedocode similar to Figure 2.)

(f) Show the schedule that results from using your algorithm to schedule the graph
shown in Figure 1.

2



ESE535 Spring 2009

A B C D E F G H I J

K L M N O

P

Q

R

S

Figure 1: Sample Graph to Schedule

3



ESE535 Spring 2009

Input: Directed Dataflow Graph G = (V, E),
Number of functional units F ,
Cycles per Operation Top

//Unscheduled is a set that holds all unscheduled nodes.
Unscheduled=Empty Set
// ReadyQueue holds nodes that are ready to execute.
// Data extracted from Queue is in strict First-In-First-Out (FIFO) order.
ReadyQueue=Empty Queue
// Cycle is an integer indicating the cycle we are scheduling
Cycle=0
// Mark all nodes as unscheduled.
for each vi ∈ V

Unscheduled.Add(vi)
// Initialize the ReadyQueue with nodes which depend on nothing.
if vi has no predecessors in G

ReadyQueue.Add(vi)
// Assign nodes to functional units and time slots.
While (not(Empty(Unscheduled)))

fu=0; // fu is a counter to keep track of assigned functional units
Running=Empty Set // nodes scheduled at Cycle
// Start as many nodes running as possible.
while ((fu< F ) and (not(Empty(ReadyQueue))))

tmpNode=ReadyQueue.removeOldest()
Assign tmpNode to Functional Unit fu at cycle Cycle
Running.add(tmpNode)

// Advance Cycle to completion time of these jobs.
Cycle=Cycle+Top

// Mark nodes as schedule.
for each node ni ∈ Running

Unscheduled.Remove(ni)
// Put all nodes enabled by the nodes which just completed into the ReadyQueue
for each node ni ∈ Running

for each successor si to node ni

if no predecesors to si ∈ Unscheduled
ReadyQueue.Add(si)

Figure 2: Simple First-Come-First-Served Scheduling Algorithm

4


