
ESE535 Spring 2009

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2009 Assignment #4 Monday, March 16

Due: Wednesday, April 8, beginning of class.

Resources: You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration: Please work independently on this assignment. For problem 2 only, you
may discuss general algorithmic strategies and help each other with the compiler, build
environment, and debugging, but each student should develop his or her own solution. If
you do discuss strategy or get debugging help, please acknowledge in your writeup.

Writeup: Writeup should be in an electronically readable format (HTML or PDF preferred—
I do not want to decipher handwriting or hand-drawn figures). State any assumptions you
need to make.

Problem 1 (offline algorithm development) [3pts]

Verify FSM Communication: Consider a pair of communicating Finite-State Machines (FSMs)
each controlling an associated datapath. Let’s call them A and B. There is a single channel
in each direction between them (AtoB and BtoA). State machine A has the control signals
SendAtoB and RcvBtoA. State machine B has the control signals SendBtoA and RcvAtoB.
Both state machines have a single designated start state and share a common reset signal
that returns them to the start state; the two machines operate from the same clock signal.
Some inputs are common to the two machines.

For correct operation, machine B should signal RcvAtoB in the same cycle as machine A
signals SendAtoB (and similarly machine A should signal RcvBtoA in the same cycle as
machine B signals SendBtoA). If the machines do not activate these complementary signal
pairs simultaneously data may be lost (e.g. if A sends and B does not receive) or one
machine may receive garbage (e.g. if A receives but B does not send). Since the FSMs run
independently after reset, it is possible that an incorrectly designed pair of FSMs might not
always simultaneously present the complementary communication signals.

Provide a verification algorithm that takes in two such FSMs, A and B, and a description
of their common input signals and determines whether or not all communication operations
are correctly paired.

1



ESE535 Spring 2009

Problem 2 (programming) [4pts]

Develop a routine to perform common subexpression elimination [CSE] (node substitution)
on graphs in the format we have used for previous assignment.

Provided starting point is available in ∼ese535/spring2009/assign4.tar on eniac. This
uses similar buildings blocks as the assignment 2 and 3 framework. Put your routine in
your cse.c.

Note the routine remove unused nodes in graph.c and called from driver4.c and the new
library node type UNUSED. This is provided to deal with the logistics of removing nodes from
the graph. It allows you to mark a node you no longer need as UNUSED during your CSE
optimization so that this routine can clean it up before the graph is written out to the file
by the provided write graph.

With this cleanup of unused nodes done for you, the hardest part of the algorithm may be
properly changing the graph to support substitution. Graphs written out by this optimiza-
tion should be usable with the your previous assignments.

The benchmark set is the same as before (with one small example that will benefit from CSE
for illustration and debugging). Some of the benchmark designs have no CSE opportunities.
Some have as many of 6% of their nodes that can be removed.

Turnin:

1. Your code (a tar file as on previous assignments that can be unpacked and built)

2. Summary of your results across the provided benchmark set including:

• nodes before your CSE
• nodes after your CSE
• percentage reduction in nodes due to CSE

+

+
X

+
X

A C B

+

+
X

A C B

2



ESE535 Spring 2009

Problem 3 (offline examples and algorithm) [3pts]

For this problem we will use a simple energy model. We lump all capacitance for the nodes
to the LUT input and assume this is the same for all LUTs (so this ignores effects of wire
lengths, just as the unit delay assumption does). We assume the dominant energy is the
energy taken to switch each of these inputs. The energy is thus:

Ecircuit ∝
∑

all gate inputs
(Pswitch(input))

For covering, assume the input netlist is already annotated with the switching probability of
each gate. Particularly, gate inputs in the input netlist which are hidden inside a mapped
gate during covering do not contribute to the energy for the mapped circuit.

(a) Show an example where all three optimization criteria would give rise to different
optimal coverings:

• area (in LUTs)

• delay (in LUT delays; you may assume fanout does not affect delay)

• energy (as described above; you may assign switching probabilities to the gate
inputs in the input netlist as you need to construct your example)

(b) Show an example where the mincut from a target node is 3 but the best cut to use for
k=4-LUT area minimization is of size 4.

(c) Give the trivial O(nk+1) algorithm for exploring all k-feasible cuts. (FYI: [1] gives a
more complicated algorithm which is significantly faster in practice.)

References

[1] Jason Cong and Yuzheng Ding. On area/depth trade-off in LUT-based FPGA technology
mapping. IEEE Transactions on VLSI Design, 2(2):137–148, June 1994.

3


