ESE535:
Electronic Design Automation

Day 10: February 18, 2009
Partitioning 2
(spectral, network flow)
器Penn

Optimization Target

- Place cells
- In linear arrangement
- Wire length between connected cells:
- distance $=\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}}$
- cost is sum of distance squared

Pick X_{i} 's to minimize cost

Penn ESE525 Spring 2009 -- DeHon

Why this Target?

- Our preferred targets are discontinuous and discrete
- Cannot formulate analytically
- Not clear how to drive toward solution
- Does reducing the channel width at a non-bottleneck help or not?
- Does reducing a non-critical path help or not?

Penn ESE525 Spring 2009 -. DeHon

Today

- Alternate views of partitioning
- Two things we can solve optimally - (but don't exactly solve our original problem)
- Techniques
- Linear Placement w/ squared wire lengths
- Network flow MinCut

Why this Target?

- Minimize sum of squared wire distances
- Prefer:
- Area: minimize channel width
- Delay: minimize critical path length

Spectral Ordering

Minimize Squared Wire length -- 1D layout

- Start with connection array $C\left(\mathrm{c}_{\mathrm{i}, \mathrm{j}}\right)$
- "Placement" Vector X for x_{i} placement
- Problem:
- Minimize cost $=0.5^{*} \Sigma($ all $\mathrm{i}, \mathrm{j})\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2} \mathrm{c}_{\mathrm{i}, \mathrm{j}}$
- cost sum is $X^{\top} B X$
- B = D-C
- $\mathrm{D}=$ diagonal matrix, $\mathrm{d}_{\mathrm{i}, \mathrm{i}}=\Sigma$ (over j) $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$

Penn ESE525 Spring 2009 -- DeHon

Preclass Netlist

- Squared wire lengths:

D Matrix

	A	B	C	G	H	O
A	1			1		
B		2		1	1	
C			1		1	
G	1	1		3		1
H		1	1		3	1
O				1	1	2

Penn ESE525 Spring 2009 -- DeHon

BX

	A	B	C	G	H	O
A	1			-1		
B		2		-1	-1	
C			1		-1	
G	-1	-1		3		-1
H		-1	-1		3	-1
O				-1	-1	2

$$
\begin{array}{|c|}
\hline \mathrm{x}_{\mathrm{A}} \\
\hline \mathrm{X}_{\mathrm{B}} \\
\hline \mathrm{x}_{\mathrm{C}} \\
\hline \mathrm{x}_{\mathrm{G}} \\
\hline \mathrm{x}_{\mathrm{H}} \\
\hline \mathrm{x}_{\mathrm{O}} \\
\hline
\end{array}
$$

$$
=\begin{array}{|c|}
\hline X_{A}^{-} X_{G} \\
\hline 2 X_{B}^{-} X_{G}^{-} X_{H} \\
\hline X_{C}^{-} X_{H} \\
\hline 3 X_{G}^{-} X_{A}^{-} X_{B}-X_{O} \\
\hline 3 X_{H}-X_{B}^{-} X_{C}-X_{O} \\
\hline 2 X_{O}-X_{G}^{-} X_{H} \\
\hline
\end{array}
$$

C Matrix

	A	B	C	G	H	O
A				1		
B				1	1	
C					1	
G	1	1				1
H		1	1			1
O				1	1	

Penn ESE525 Spring 2009 -- DeHon

Trying to Minimize

- Squared wire lengths:

$$
\begin{array}{ll}
\text { - Squared wire } & \text { - Which we know is } \\
\text { lengths: } & \text { also } X^{\top} B X \\
\left(X_{A}-X_{G}\right)^{2} & \\
+\left(X_{B}-X_{G}\right)^{2} & \text { - Make all } X_{i} \text { 's same? } \\
+\left(X_{B}-X_{H}\right)^{2} & \\
+\left(X_{C}-X_{H}\right)^{2} & \text { - ...but, we probably } \\
+\left(X_{G}-X_{O}\right)^{2} & \text { need to be in unique } \\
+\left(X_{H}-X_{O}\right)^{2} & \text { positions. }
\end{array}
$$

Spectral Ordering

- Add constraint: $\mathrm{X}^{\top} \mathrm{X}=1$
- prevent trivial solution all $x_{i} s^{\prime}=0$
- Minimize cost $=X^{\top} B X$ w/ constraint
- minimize $L=X^{\top} B X-\lambda\left(X^{\top} X-1\right)$
$-\partial L / \partial X=2 B X-2 \lambda X=0$
- (B- $\lambda 1) \mathrm{X}=0$
$-X \rightarrow$ Eigenvector of B
- cost is Eigenvalue λ

Penn ESE525 Spring 2009 -- DeHon

Spectral Solution

- Smallest eigenvalue is zero
- Corresponds to case where all x_{i} 's are the same \rightarrow uninteresting
- Second smallest eigenvalue (eigenvector) is the solution we want

Spectral Ordering

- X (x_{i} 's) continuous
- use to order nodes
- real problem wants to place at discrete locations
- this is one case where can solve ILP from LP
- Solve LP giving continuous x_{i} 's
- then move back to closest discrete point

Eigenvector for B

A
G
O
B
H
C

X_{A}
X_{B}
X_{C}
X_{G}
X_{H}
X_{O}
:---
$1.1157741 \mathrm{E}-14$
-0.6532815
0.27059805
-0.27059805
$1.9342212 \mathrm{E}-14$

Penn ESE525 Spring 2009 -. DeHon
23

Eigenvector for B

B Matrix

	A	B	C	G	H	O
A	1			-1		
B		2		-1	-1	
C			1		-1	
G	-1	-1		3		-1
H		-1	-1		3	-1
O				-1	-1	2

$$
\begin{array}{|c|}
\hline \mathrm{X}_{\mathrm{A}} \\
\hline \mathrm{X}_{\mathrm{B}} \\
\hline \mathrm{X}_{\mathrm{C}} \\
\hline \mathrm{X}_{\mathrm{G}} \\
\hline \mathrm{X}_{\mathrm{H}} \\
\hline \mathrm{X}_{\mathrm{O}} \\
\hline
\end{array}
$$

$=$| 0.6532815 |
| :--- |
| $1.1157741 \mathrm{E}-14$ |
| -0.6532815 |
| 0.27059805 |
| -0.27059805 |
| $1.9342212 \mathrm{E}-14$ |
| |

Eigenvector for B

Order?

Penn ESE525 Spring 2009 -- DeHon

Spectral Ordering Option

- With iteration, can reweigh connections to change cost model being optimized
- linear
- (distance) ${ }^{1 . \mathrm{X}}$
- Can encourage "closeness"
- by weighting connection between nodes
- Making $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$ larger
- (have to allow some nodes to not be close)

Penn ESE525 Spring 2009 -- DeHon

Spectral Partitioning

- Can form a basis for partitioning
- Attempts to cluster together connected components
- Create partition from ordering
- E.g. Left half of ordering is one half, right half is the other

Fanout

- How do we treat fanout?

- As described assumes point-to-point nets
- For partitioning, pay price when cut something once
- l.e. the accounting did last time for KLFM
- Also a discrete optimization problem
- Hard to model analytically

Spectral Partitioning Options

- Can bisect by choosing midpoint
- (not strictly optimizing for minimum bisect)
- Can relax cut critera
- min cut w/in some δ of balance
- Ratio Cut
- minimize (cut/|A||B|)
- idea tradeoff imbalance for smaller cut
- more imbalance \rightarrow smaller $|A||B|$
- so cut must be much smaller to accept
- Circular bisect/relaxed/ratio cut
- wrap into circle and pick two cut points
- How many such cuts?

Spectral Ordering

- Midpoint bisect isn't necessarily best place to cut, consider:

Spectral Fanout

- Typically:
- Treat all nodes on a single net as fully connected
- Model links between all of them

$1 / 2$ B $1 / 2$
- Weight connections so cutting in half counts as cutting the wire
- Threshold out high fanout nodes
- If connect to too many things give no information

MinCut Goal

- Find maximum flow (mincut) between a source and a sink
- no balance guarantee
- Unlike KLFM, attacks global connectivity characteristics
- Good for finding "natural" clusters
- hence use as clustering heuristic for multilevel algorithms
- After doing spectral
- Can often improve incrementally using KLFM pass

Penn ESE525 Spring 2009 -. DeHon

MaxFlow

- Set all edge flows to zero
- $\mathrm{F}[\mathrm{u}, \mathrm{v}]=0$
- While there is a path from s, t
- (breadth-first-search)
- for each edge in path $f[u, v]=f[u, v]+1$
- $f[v, u]=-f[u, v]$
- When $c[v, u]=f[v, u]$ remove edge from search
- O(|E|*cutsize)
- [Our problem simpler than general case CLR]

Penn ESE525 Spring 2009 -. DeHon

Technical Details

- For min-cut in graphs,
- Don't really care about directionality of cut
- Just want to minimize wire crossings
- Fanout
- Want to charge discretely ...cut or not cut
- Pick start and end nodes?

Observation

- Can use residual flow from previous cut when computing next cuts
- Consequently, work of multiple network flows is only $\mathrm{O}(|E|$ ㅌfinal_cut_cost)

Extend to Balanced Cut

- Pick a start node and a finish node
- Compute min-cut start to finish
- If halves sufficiently balanced, done
- else
- collapse all nodes in smaller half into one node
- pick a node adjacent to smaller half
- collapse that node into smaller half
- repeat from min-cut computation

FBB -- Yang/Wong ICCAD'94
Penn ESE525 Spring 2009 -- DeHon

Picking Nodes

- Optimal:
- would look at all s,t pairs
- Just for first cut is merely N-1 "others"
- ...N/2 to guarantee something in second half
- Anything you pick must be in separate halves
- Assuming there is a perfect/ideal bisection
- If pick randomly, probability different halves: 50\%
-Few random selections likely to yield s,t in different halves
- would also look at all nodes to collapse into smaller
- could formulate as branching search

Picking Nodes

- Randomly pick
- (maybe try several starting points)
- With small number of adjacent nodes, - could afford to branch on all

Big Ideas

- Divide-and-Conquer
- Techniques
- flow based
- numerical/linear-programming based
- Transformation constructs
- Exploit problems we can solve optimally
- Mincut
- Linear ordering

