
1

Penn ESE 535 Spring 2009 -- DeHon
1

ESE535:
Electronic Design Automation

Day 13: March 4, 2009
FSM Equivalence Checking

Penn ESE 535 Spring 2009 -- DeHon
2

Today

• Sequential Verification
– FSM equivalence
– Issues

• Extracting STG
• Valid state reduction
• Incomplete Specification

Penn ESE 535 Spring 2009 -- DeHon
3

Motivation

• Write at two levels
– Java prototype and VHDL implementation
– VHDL specification and gate-level

implementation
• Write at high level and

synthesize/optimize
– Want to verify that synthesis/transforms did

not introduce an error

Penn ESE 535 Spring 2009 -- DeHon
4

Cornerstone Result
• Given two FSM’s, can test their

equivalence in finite time
• N.B.:

– Can visit all states in a FSM with finite input
strings

• No longer than number of states
• Any string longer must have visited some state

more than once (by pigeon-hole principle)
• Cannot distinguish any prefix longer than

number of states from some shorter prefix
which eliminates cycle (pumping lemma)

Penn ESE 535 Spring 2009 -- DeHon
5

FSM Equivalence

• Given same sequence of inputs
– Returns same sequence of outputs

• Observation means can reason about
finite sequence prefixes and extend to
infinite sequences which FSMs are
defined over

Penn ESE 535 Spring 2009 -- DeHon
6

Equivalence

• Brute Force:
– Generate all strings of length |state|

• (for larger FSM = most states)
– Feed to both FSMs with these strings
– Observe any differences?

• How many such strings?
– |Alphabet|states

2

Penn ESE 535 Spring 2009 -- DeHon
7

Smarter

• Create composite FSM
– Start with both FSMs
– Connect common inputs together (Feed both

FSMs)
– XOR together outputs of two FSMs

• Xor’s will be 1 if they disagree, 0 otherwise

• Ask if the new machine ever generate a 1 on
an xor output (signal disagreement)
– Anything it accepts is a proof of non-equivalence
– Accepts nothing equivalent

Penn ESE 535 Spring 2009 -- DeHon
8

Creating Composite FSM

• Assume know start state for each FSM
• Each state in composite is labeled by the pair

{S1i, S2j}
– At most product of states

• Start in {S10, S20}
• For each symbol a, create a new edge:

– T(a,{S10, S20}) {S1i, S2j}
• If T1(a, S10) S1i, and T2(a, S20) S2j

• Repeat for each composite state reached

Penn ESE 535 Spring 2009 -- DeHon
9

Composite DFA

• At most |alphabet|*|State1|*|State2|
edges == work

• Can group together original edges
– i.e. in each state compute intersections of

outgoing edges
– Really at most |E1|*|E2|

Penn ESE 535 Spring 2009 -- DeHon
10

Acceptance

• State {S1i, S2j} is an accepting state iff
– On some input, State S1i and S2j produce

different outputs
• If S1i and S2j have the same outputs for

all composite states, it is impossible to
distinguish the machines
– They are equivalent

• A reachable state with differing outputs
– Implies the machines are not identical

Penn ESE 535 Spring 2009 -- DeHon
11

Empty Language

• Now that we have a composite state
machine, with this acceptance

• Question: does this composite state
machine accept anything?
– Is there a reachable state has differing

outputs?

Penn ESE 535 Spring 2009 -- DeHon
12

Answering Empty Language

• Start at composite start state {S10, S20}
• Search for path to an Accepting state
• Use any search (BFS, DFS)
• End when find accepting state

– Not equivalent
• OR when have explored entire

reachable graph w/out finding
– Are equivalent

3

Penn ESE 535 Spring 2009 -- DeHon
13

Reachability Search

• Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

• Should be able to combine composition
construction and search
– i.e. only follow edges which fill-in as search

Penn ESE 535 Spring 2009 -- DeHon
14

Example

s3 s4

0

s0

s1 s2

0 1

1 0 1

101

0

q0

q1 q2

0 1

0 1 0 1

= accept state

Penn ESE 535 Spring 2009 -- DeHon
15

Issues to Address

• Obtaining State Transition Graph from
Logic

• Incompletely specified FSM?
• Know valid (possible) states?

Penn ESE 535 Spring 2009 -- DeHon
16

Getting STG from Logic

• Brute Force
– For each state

• For each input minterm
– Simulate/compute output
– Add edges

– Compute set of states will transition to
• Smarter

– Exploit cube grouping, search pruning
• Cover sets of inputs together

– Coming attraction: PODEM

Penn ESE 535 Spring 2009 -- DeHon
17

Incomplete State Specification

• Add edge for unspecified transition to
– Single, new, terminal state

• Reachability of this state may indicate
problem
– Actually, if both transition to this new state

for same cases
• Might say are equivalent
• Just need to distinguish one machine in this

state and other not
Penn ESE 535 Spring 2009 -- DeHon

18

Valid States

• Composite state construction and
reachability further show what’s
reachable

• So, end up finding set of valid states
– Not all possible states from state bits

4

Penn ESE 535 Spring 2009 -- DeHon
19

Summary

• Finite state means
– Can test with finite input strings

• Composition
– Turn it into a question about a single FSM

• Reachability
– Allows us to use poly-time search on FSM

to prove equivalence

Penn ESE 535 Spring 2009 -- DeHon
20

Admin

• Next Week: Spring Break
• Next Lecture: Monday March 16
• Reading: Hardcopy handout today

Penn ESE 535 Spring 2009 -- DeHon
21

Big Ideas
• Equivalence

– Same observable behavior
– Internal implementation irrelevant

• Number/organization of states, encoding of state bits…

• Exploit structure
– Finite DFA … necessity of reconvergent paths
– Pruning Search – group together cubes
– Limit to valid/reachable states

• Proving invariants vs. empirical verification

