

Bad: Area

- All wires cross bisection
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ area
- good: O(N)
Penn ESE535 Spring 2009 -. DeHon

$$
\begin{aligned}
& \text { metal wires } \\
& \text { crossing } \\
& \text { middle of }
\end{aligned}
$$

Today

- Placement Problem
- Partitioning \rightarrow Placement
- Quadrisection
- Refinement

Bad Placement

- How bad can it be?
- Area
- Delay
- Energy

Bad: Delay

- All critical path wires cross chip
- Delay $=\mathrm{O}\left(|\mathrm{PATH}| \star{ }^{2} \mathrm{~L}_{\text {side }}\right)$ - [and $\mathrm{L}_{\text {side }}$ is $\mathrm{O}(\mathrm{N})$]
- good: O(|PATH|* Lell $\left._{\text {cel }}\right)$
- compare 50 ps gates to many nanoseconds to cross chip

Penn ESE535 Spring 2009 -- DeHon

Clock Cycle Radius

Radius of logic can reach in one cycle (45 nm)

- 1 Cycle Radius = 10
- Few hundred PEs
- Chip side 600-700 PE
- 400-500 thousand PEs - 100s of cycles to cross

Distance

- Can we place everything close?

Illustration

- Consider a complete tree
- nand2's, no fanout - N nodes
- Logical circuit depth?
- Circuit Area?
- Side Length?
- Average wire length between nand gates? (lower bound)

Bad: Energy

- All wires cross chip:
$\mathrm{O}\left(\mathrm{L}_{\text {side }}\right)$ long $\rightarrow \mathrm{O}\left(\mathrm{L}_{\text {side }}\right)$ capacitance per wire - Recall Area $\rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$
- So $\mathrm{L}_{\text {side }} \rightarrow \mathrm{O}(\mathrm{N})$
$\times \mathrm{O}(\mathrm{N})$ wires $\rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$ capacitance
- Good:
$\mathrm{O}(1)$ long wires $\rightarrow \mathrm{O}(\mathrm{N})$ capacitance

"Closeness"

- Try placing "everything" close

 $\begin{array}{cc}2 \square^{2} \\ \square & 10 \\ \square & \end{array}$

Another Example

- Consider a cut size $F(N)>\sqrt{ } N$
- If optimally place all $F(N)$ producers right next to bisection
- How many cells deep is producer farthest from the bisection?
- Lower bound on wire length?

Problem Characteristics

- Familiar
- NP Complete
- local, greedy not work
- greedy gets stuck in local minima

Basic Idea

- Partition (bisect) to define halves of chip - minimize wire crossing
- Recurse to refine
- When get down to single component, done

Problems

- Greedy, top-down cuts - maybe better pay cost early?
- Two-dimensional problem
- (often) no real cost difference between H and V cuts
- Interaction between subtrees
- not modeled by recursive bisect

Penn ESE535 Spring 2009 -. DeHon

Adequate?

- Does recursive bisection capture the primary constraints of two-dimensional placement?

Problem

- Need to keep track of where things are
- outside of current partition
- include costs induced by above
- ...but don't necessarily know where things are
- still solving problem

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
- use existing in src/sink
- A nets $=$ src, B nets $=$ sink

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
- use existing in src/sink
- A nets = src, B nets = sink
- FM: start with fixed, unmovable nets for side-biased inputs
Penn ESE535 Spring 2009 -- DeHon

Improvement: Constrain

- Partition once
- Constrain movement within existing partitions
- Account for both H and V crossings
- Partition next
- (simultaneously work parallel problems)
- easy modification to FM

Improvement: Quadrisect

- Solve more of problem at once
- Quadrisection:
- partition into 4 bins simultaneously
- keep track of costs all around

Recurse

- Keep outside constraints - (cost effects)
- Don't know detail place
- Model as at center of unrefined region

Penn ESE535 Spring 2009 -- DeHon

Option: Terminal Propagation

- Abstract inputs as terminals
- Partition based upon
- Represent cost effects on placement/refinement decisions

Penn ESE535 Spring 2009 -. DeHon
Option: Refine

- Keep refined placement
- Use in cost estimates

Penn ESE535 Spring 2009 -- DeHon

Possible Refinement

- Allow unbalanced cuts
- most things still work
- just distort refinement groups
- allowing unbalance using FM quadrisection looks a bit tricky
- gives another 5-10\% improvement

Uses - Good by self - Starting point for simulated annealing - speed convergence - With synthesis (both high level and logic) - get a quick estimate of physical effects - (play role in estimation/refinement at larger level) - Early/fast placement - before willing to spend time looking for best - For fast placement where time matters - FPGAs, online placement?	

Runtime

- Each gain update still O(1)
- (bigger constants)
- so, FM partition pass still O(N)
- $O(1)$ iterations expected
- assume $\mathrm{O}(1)$ overlaps exploited
- O(log(N)) levels
- Total: $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- very fast compared to typical annealing
- (annealing next time)

Penn ESE535 Spring 2009 -- DeHon

Summary

- Partition to minimize cut size
- Additional constraints to do well - Improving constant factors
- Quadrisection
- Keep track of estimated placement
- Relax/iterate/Refine

Big Ideas:

- Potential dominance of interconnect
- Divide-and-conquer
- Successive Refinement
- Phase ordering: estimate/relax/iterate

