ESE535: Electronic Design Automation

Day 19: April 8, 2009 Placement (Intro, Constructive)

enn ESE535 Spring 2009 -- DeHor

Today

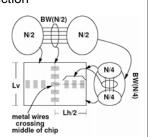
- Placement Problem
- Partitioning→Placement
- Quadrisection
- Refinement

enn ESE535 Spring 2009 -- DeHon

Placement

- Problem: Pick locations for all building blocks
 - minimizing energy, delay, area
 - really:
 - minimize wire length
 - · minimize channel density

enn ESE535 Spring 2009 -- DeHon

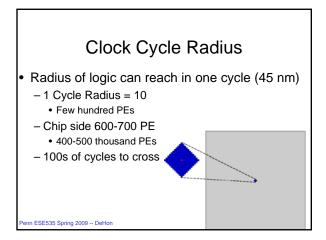

Bad Placement

- How bad can it be?
 - Area
 - Delay
 - Energy

Penn ESE535 Spring 2009 -- DeHon

Bad: Area

- All wires cross bisection
- O(N2) area
- good: O(N)



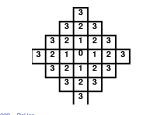
enn ESE535 Spring 2009 -- DeHor

Bad: Delay

- · All critical path wires cross chip
- Delay =O(|PATH|*2*L_{side})
 [and L_{side} is O(N)]
- good: O(|PATH|* L_{cell})
- compare 50ps gates to many nanoseconds to cross chip

Penn ESE535 Spring 2009 -- DeHon

Bad: Energy


- All wires cross chip:
 - $O(L_{side})$ long $\rightarrow O(L_{side})$ capacitance per wire
 - Recall Area→O(N²)
 - So L_{side} → O(N)
 - $\times O(N)$ wires $\rightarrow O(N^2)$ capacitance
- Good:

O(1) long wires $\rightarrow O(N)$ capacitance

enn ESE535 Spring 2009 -- DeHon

Distance

• Can we place everything close?

Penn ESE535 Spring 2009 -- DeHon

"Closeness"

• Try placing "everything" close

Manhattan Distance	Places	Transitive Fanin
1	4	4
2	8	16
3	12	64
i	ı	ı
n	4 n	4 ⁿ

333333333333 2222 1

Illustration

- Consider a complete tree
 - nand2's, no fanout
 - N nodes
- · Logical circuit depth?
- · Circuit Area?
- Side Length?
- Average wire length between nand gates? (lower bound)

enn ESE535 Spring 2009 -- DeHon

Another Example

- Consider a cut size $F(N) > \sqrt{N}$
- If optimally place all F(N) producers right next to bisection
 - How many cells deep is producer farthest from the bisection?
- Lower bound on wire length?

enn ESE535 Spring 2009 -- DeHon

11

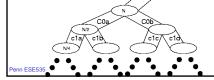
Problem Characteristics

- Familiar
 - NP Complete
 - local, greedy not work
 - greedy gets stuck in local minima

Penn ESE535 Spring 2009 -- DeHor

13

Constructive Placement


14

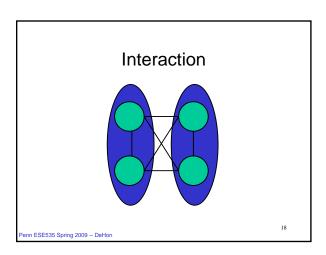
Penn ESE535 Spring 2009 -- DeHor

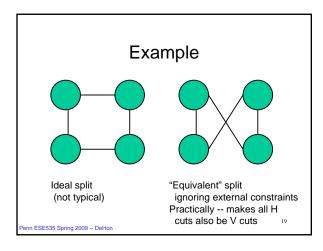
Basic Idea

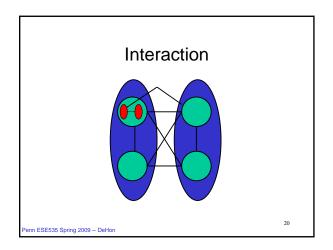
- Partition (bisect) to define halves of chip

 minimize wire crossing
- · Recurse to refine
- When get down to single component, done

Adequate?


 Does recursive bisection capture the primary constraints of two-dimensional placement?


Penn ESE535 Spring 2009 -- DeHon


Problems

- · Greedy, top-down cuts
 - maybe better pay cost early?
- Two-dimensional problem
 - (often) no real cost difference between H and V cuts
- Interaction between subtrees
 - not modeled by recursive bisect

Penn ESE535 Spring 2009 -- DeHon

Problem

- Need to keep track of where things are
 - outside of current partition
 - include costs induced by above
- ...but don't necessarily know where things are
 - still solving problem

enn ESE535 Spring 2009 -- DeHon

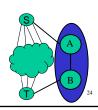
Improvement: Ordered

- · Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem

Penn ESE535 Spring 2009 -- DeHon

Improvement: Ordered

- · Order operations
- · Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
 - use existing in src/sink
 - -A nets = src, B nets = sink

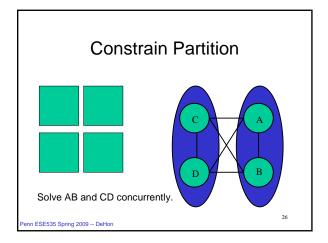


enn ESE535 Spring 2009 -- DeHon

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
 - use existing in src/sink
 - A nets = src, B nets = sink
- FM: start with fixed, unmovable nets for side-biased inputs

Penn ESE535 Spring 2009 -- DeHon



Improvement: Constrain

- · Partition once
- Constrain movement within existing partitions
- Account for both H and V crossings
- · Partition next
 - (simultaneously work parallel problems)
 - easy modification to FM

enn ESE535 Spring 2009 -- DeHon

25

Improvement: Quadrisect

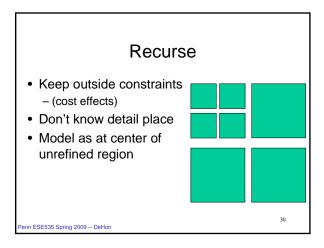
- · Solve more of problem at once
- · Quadrisection:
 - partition into 4 bins simultaneously
 - keep track of costs all around

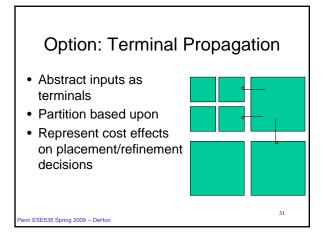
enn ESE535 Spring 2009 -- DeHon

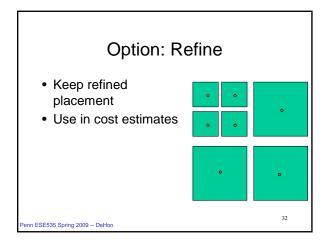
27

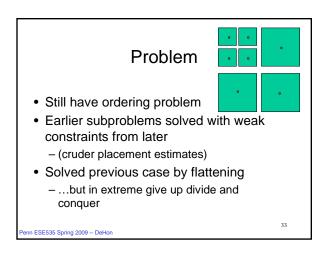
Quadrisect

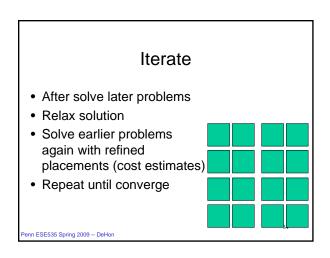
- Modify FM to work on multiple buckets
- k-way has:
 - k(k-1) buckets
 - $\ |\mathsf{from}| \times |\mathsf{to}|$
 - quad→ 12
- · reformulate gains
- update still O(1)

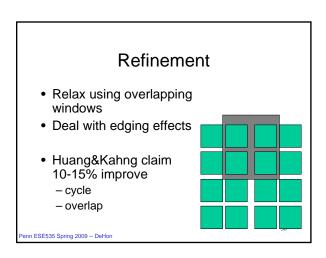

Penn ESE535 Spring 2009 -- DeHon


20


Quadrisect


- Cases (15):
 - $-(1 partition) \rightarrow 4$
 - $-(2 part) \rightarrow 6 = (4 choose 2)$
 - $-(3 \text{ part}) \rightarrow 4 = (4 \text{ choose } 3)$
 - (4 part) → 1


Penn ESE535 Spring 2009 -- DeHon



Iteration/Cycling • General technique to deal with phase-ordering problem – what order do we perform transformations, make decisions? – How get accurate information to everyone • Still basically greedy

Possible Refinement

- · Allow unbalanced cuts
 - most things still work
 - just distort refinement groups
 - allowing unbalance using FM quadrisection looks a bit tricky
 - gives another 5-10% improvement

Penn ESE535 Spring 2009 -- DeHo

37

Runtime

- Each gain update still O(1)
 - (bigger constants)
 - so, FM partition pass still O(N)
- O(1) iterations expected
- assume O(1) overlaps exploited
- O(log(N)) levels
- Total: O(N log(N))
 - very fast compared to typical annealing
 - (annealing next time)

Penn ESE535 Spring 2009 -- DeHon

Quality: Area

	GORD-L	DOMINO	QUAD	Impr.	Impr.
Case	MSTx100			GOR-L	DOMI
prim1	10500	10059	10208	2.8%	-1.5%
prim2	45994	43705	44478	3.3%	-1.8%
ind2	436300	417264	380194	12.9%	8.9%
ind3	1121000	1048673	970068	13.5%	7.5%
fract	400	383	380	5.0%	0.8%
C1908	1858	1767	1830	1.5%	-3.6%
C5315	6220	5922	6185	0.6%	-4.4%
C6288	8794	8339	8312	5.5%	0.3%
s1423	2334	2208	2265	3.0%	-2.6%
s1488	2680	2558	2470	7.8%	3.4%
s5378	8609	8182	8208	4.7%	-0.3%
s9234	14848	14023	13848	6.7%	1.3%
s13207	31284	29995	28161	9.9%	6.1%
s15850	37020	35591	33625	9.2%	5.5%
struct	4160	3967	4196	-0.9%	-5.8%
biomed	34677	33712	33787	2.6%	-0.2%
avq_s	95648	92355	95867	-0.2%	-3.8%
avq_l	100650	97825	101930	-1.3%	-4.2%
Impr.				4.8%	0.3%

Penn ESE535 Spring 2009 -- DeHon

[Huang&Kahng/ISPD1997]

Quality: Delay

- Weight edges based on criticality
 - Periodic, interleaved timing analysis

Case	Measure	Max Intrinsic Path Delay	TW7.0	Timing- QUAD
fract	Delay MSTx100	10.6	17.9 349	$\frac{18.1}{347}$
struct	Delay MSTx100	40.0	$78.8 \\ 5130$	$\frac{79.3}{5103}$
avq_s	Delay MSTx100	37.3	$61.4 \\ 46763$	$60.9 \\ 47153$

Penn ESE535 Spring 2009 -- DeHon

40

Uses

- · Good by self
- Starting point for simulated annealing
 - speed convergence
- With synthesis (both high level and logic)
- get a quick estimate of physical effects
- (play role in estimation/refinement at larger level)
- Early/fast placement
 - before willing to spend time looking for best
- For fast placement where time matters
 - FPGAs, online placement?

Penn ESE535 Spring 2009 -- DeHon

41

Summary

- · Partition to minimize cut size
- · Additional constraints to do well
 - Improving constant factors
- · Quadrisection
- · Keep track of estimated placement
- Relax/iterate/Refine

enn ESE535 Spring 2009 -- DeHon

Admin

- Reading for Monday
 - Online (JSTOR): classic paper on Simulated Annealing
- Assignment 5 out
 - Retiming
 - Programming: 1D Placement
 - Channel width optimization

Penn ESE535 Spring 2009 -- DeHon

43

Big Ideas:

- Potential dominance of interconnect
- Divide-and-conquer
- Successive Refinement
- Phase ordering: estimate/relax/iterate

nn ESE535 Spring 2009 -- DeHon