

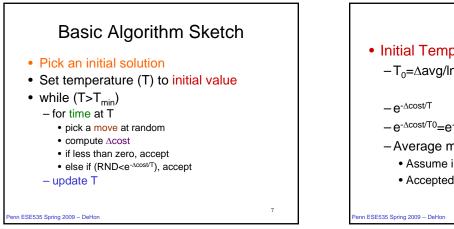
Simulated Annealing

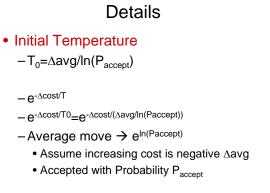
- At high temperature can move around
 - not trapped to only make "improving" moves
 - free energy from "temperature" allows exploration of non-minimum states
 - avoid being trapped in local minima
- As temperature lowers
 - less energy available to take big, non-minimizing moves

5

- more local / greedy moves

```
Penn ESE535 Spring 2009 -- DeHon
```


Design Optimization


Components:

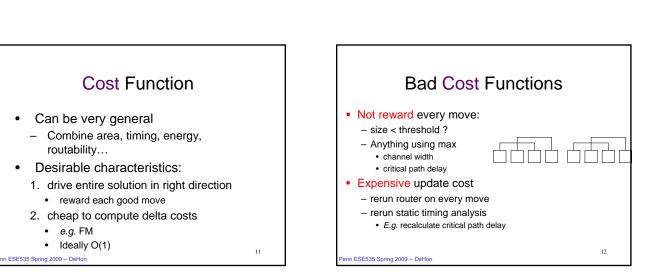
- 1. "Energy" (Cost) function to minimize
- represent entire state, drives system forward
- 2. Moves
 - local rearrangement/transformation of solution
- 3. Cooling schedule
 - initial temperature
 - temperature steps (sequence)
 - time at each temperature

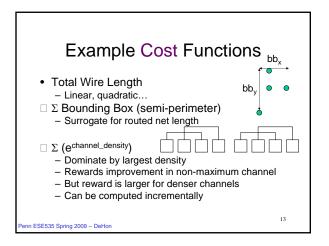
enn ESE535 Spring 2009 -- DeHon

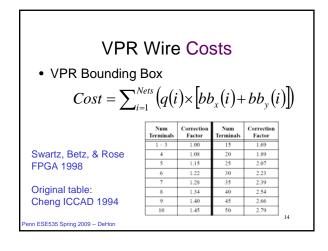
6

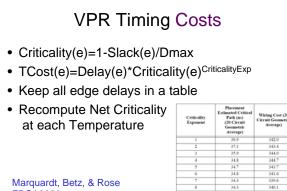
8

γ

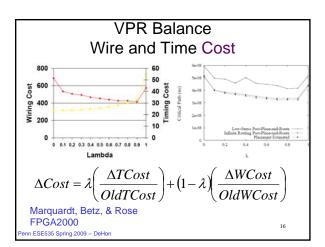

0.5

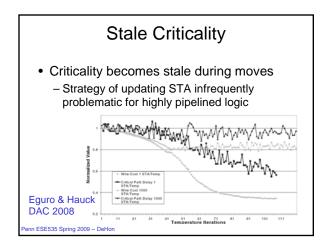

0.95

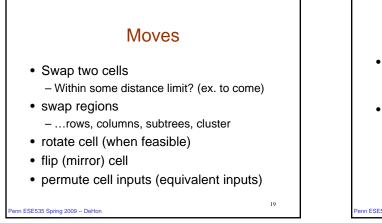

0.8

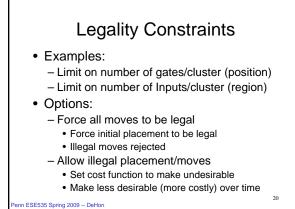

10

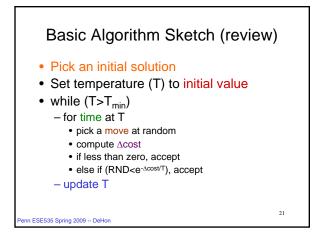
Details VPR Cooling Schedule Cooling schedule - fixed ratio: $T=\lambda T$ Moves at Temperature = cN^{4/3} • (e.g. λ=0.85) Temperature Update - temperature dependent - Tnew=Told×γ - function of both temperature and α acceptance rate - Idea: advance slowly · example to come in good α range α > 0.96 Time at each temperature $\Box \alpha$ is measured 0.8 < α ≤ 0.96 0.9 acceptance rate - fixed number of moves? 0.15 < α ≤ 0.8 Betz, Rose, & Marquardt - fixed number of rejected moves? α ≤ 0.15 Kluwer 1999 - fixed fraction of rejected moves? ESE535 Spring 2 ESE535 Spring 2009 -- DeHon

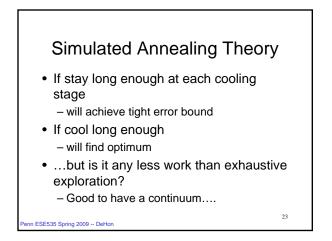


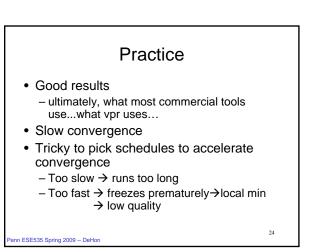


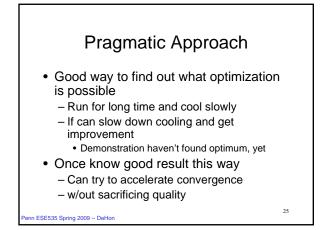


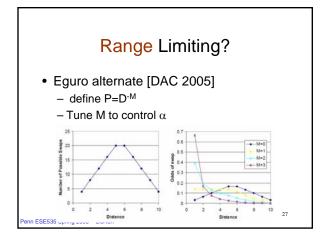

Criticality Exponent	Placement Estimated Critical Path (ns) (20 Circuit Geometric Average)	Wiring Cost (20 Circuit Geometric Average)
1	38.9	342.0
2	37.1	343.4
3	35.9	344.0
4	34.8	344.7
5	34.7	343.7
6	34.8	341.6
7	34.3	339.6
8	34.3	340.1
9	33.8	339.6
10	34.3	337.9
11	34.3	336.3










Range Limit

- Want to tune so accepting 44% of the moves – Lam and Delosme DAC 1988
- VPR
 - Define Rlimit defines maximum Δx and Δy accepted
 - Tune Rlimit to maintain acceptance rate

26

- Rlimit^{new}=Rlimit^{old}×(1-0.44+ α)
 - $\Box \alpha$ is measured acceptance rate

nn ESE535 Spring 2009 -- DeHon

Big Hammer

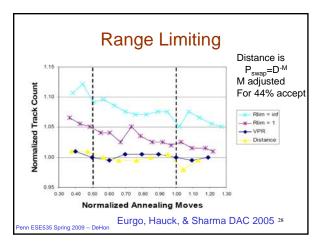
- (part, placement, route, retime, schedule...) Can have hybrid/mixed cost functions

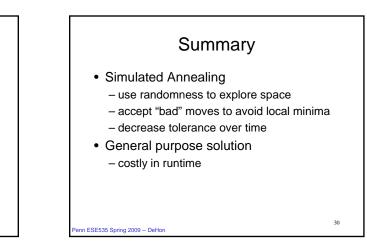
- resignation to finding/understanding structure

29

- as long as weight to single potential

· Costly, but general


- place and route


nn ESE535 Spring 2009 -- DeHon

Works for most all problems

– (e.g. wire/time from VPR)
With care, can attack multiple levels

· Ignores structure of problem

5

Admin

• Reading for Monday online

n ESE535 Spring 2009 -- DeHon

Big Ideas:

- Use randomness to explore large (nonconvex) space
 - Sample various parts of space
 - Avoid becoming trapped in local minimum

32

- Technique
 - Simulated Annealing

Penn ESE535 Spring 2009 -- DeHon

31