ESES535:
Electronic Design Automation

Day 22: April 20, 2009
Routing 2
(Pathfinder)

& Penn

Penn ESE 535 Spring 2009 -- DeHon

Today

* Routing
— Pathfinder
« graph based
« global routing
« simultaneous global/detail

Penn ESE 535 Spring 2009 -- DeHon

Global Routing

« Problem: Find sequence of channels
for all routes
— minimizing channel sizes
— minimize max channel size
— meeting channel capacity limits

Penn ESE 535 Spring 2009 -- DeHon

i H B

Global->Graph
. Grqph Problem on routes through
regions
o o
CI00cIE
CIECIEIE
CI0IE % "
| o 4

Penn ESE 535 Spring 2009 -- DeHon

Global/Detall

» With limited switching (e.g. FPGA)
— can represent routing graph exactly

Penn ESE 535 Spring 2009 -- DeHon

Routing in Graph

 Find (shortest/available) path between
source and sink

— search problem (e.g. BFS, Bellman Ford, A*)

Breadth First Search (BFS)

» Start at source

¢ Put src node in priority queue with cost 0
— Priority queue orders by cost
« While (not found sink)
— Pop least cost node from queue
« Get: current_node, current_cost
— Is this sink? > found
— For each outgoing edge
+ Push destination onto queue
« with cost current_cost+edge_cost

7
Penn ESE 535 Spring 2009 -- DeHon

Easy?
* Finding a path is moderately easy

* What's hard?

— Can | just iterate and pick paths?

9
Penn ESE 535 Spring 2009 -- DeHon

Challenge ﬁ
Satisfy all routes simultaneously
* Routes share potential resources
» Greedy/iterative

— not know who will need which resources
— i.e. resource/path choice looks arbitrary

— ...but earlier decisions limit flexibility for later
« like scheduling
— order effect result

11
Penn ESE 535 Spring 2009 -- DeHon

Day 18

Bellman Ford

Forl<OtoN
—u;«oo (except u=0 for 10)
* Fork«OtoN
—for e;;eE
* U min(u; ui+w(e;;)
* Fore;eE //still update 2negative cycle
o ify >uj+w(ei1j)
—cycles detected

8
Penn ESE 535 Spring 2009 -- DeHon
ﬁ All links capacity 1
s; =0
10
Penn ESE 535 Spring 2009 -- DeHon

Negotiated Congestion

* Old idea
—try once
— see where we run into problems
— undo problematic/blocking allocation
e rip-up

— use that information to redirect/update
costs on subsequent trials

- retry

12
Penn ESE 535 Spring 2009 -- DeHon

Negotiated Congestion

e Here
— route signals
— allow overuse

— identify overuse and encourage signals to
avoid

« reroute signals based on overuse/past
congestion

Penn ESE 535 Spring 2009 -- DeHon

Basic Algorithm

» Route signals along minimum cost path
« If congestion/overuse

— assign higher cost to congested resources
* Repeat until done

Penn ESE 535 Spring 2009 -- DeHon

Key ldea

¢ Congested paths/resources become
expensive
¢ When there is freedom

— future routes, with freedom to avoid congestion
will avoid it

¢ When there is less freedom
— must take congested routes

¢ Routes which must use congested resources
will, while others will chose uncongested
paths

Penn ESE 535 Spring 2009 -- DeHon

Cost Function (1)

PathCost=% (link costs)
 LinkCost = base x f(#routes using, time)
» Base cost of resource 3+1+4=8

— E.g. delay of resource

— Encourage minimum resource usage

« (minimum length path, if possible)

— minimizing delay = minimizing resources
e Congestion
— penalizes (over) sharing
— increase sharing penalty over time

Penn ESE 535 Spring 2009 -- DeHon

Example
(first order congestion)

Capacity

Base costs (delays)

Penn ESE 535 Spring 2009 -- DeHon

Example
(first order congestion)

Capacity

Base costs (delays)

All, individual routes prefer middle; create congestion.

18

Penn ESE 535 Spring 2009 -- DeHon

Example
(first order congestion)

Capacity

Base costs (delays)

Reroute, avoid congestion.

Penn ESE 535 Spring 2009 -- DeHon

Example (need for history)

®.9.9

Capacity

Base costs (delays)

Need to redirect uncongested paths; how encourage?

Penn ESE 535 Spring 2009 -- DeHon

Example (need for history)

Local congestion alone
won't drive in right
directions.

Both paths equal cost
...neither resolves problem.

May ping-pong back
and forth.

(can imagine longer
chain like this) 2

Cannot route s3->d3

Penn ESE 535 Spring 2009 -- DeHon

Cost Function (2)

 Cost = (base + history)*f(#resources,time)

* History
— avoid resources with history of congestion

Penn ESE 535 Spring 2009 -- DeHon

Example (need for history)

S3->d3 and s4->d4
initially ping-pong

Builds up congestion history on
path 3 and 4

Eventually makes path 3 and 4
more expensive than path 1;
...resolves conflict...

= Adaptive cost scheme.

23

Penn ESE 535 Spring 2009 -- DeHon

What about delay?

« Existing formulation uses delay to
reduces resources, but doesn't directly
treat

* Want:

— prioritize critical path elements for shorter
delay
— allow nodes with slack to take longer paths

Penn ESE 535 Spring 2009 -- DeHon

Cost Function (Delay)

e Cost=
— (1-W(edge))*delay + W(edge) *congest
— congest as before
« (base+history)*f(#signals,time)

* W(edge) = Slack(edge)/Dmax
— 0 for edge on critical path critical path
— >0 for paths with slack
« Use W(edge) to order routes
« Update critical path and W each round

Penn ESE 535 Spring 2009 -- DeHon

Cost Function (Delay)

e Cost=
— (1-W(edge))*delay + W(edge) *congest
— congest as before
« (base+thistory)*f(#signals,time)

* W(edge) = Slack(edge)/Dmax

What happens if multiple slack 0 nets
contend for edge?
W/(edge)=Min(maxcrit,Slack(edge)/Dmax)
— Maxcrit< 1

Penn ESE 535 Spring 2009 -- DeHon

Convergence

Chan+Schlag [FPGA’2000]
— cases where doesn’t converge
— special case of bipartite graphs
« converge if incremental
« or if prefer uncongested to least history cost
« theory (continuous)
—only reroute overflow
— converge in O(|E|) reroutes
— But then have fractional routes...

Penn ESE 535 Spring 2009 -- DeHon

Rerouting

» Default: reroute everything

» Can get away rerouting only congested
nodes
—if keep routes in place

— history force into new tracks

« causing greedy/uncongested routes to be
rerouted

Penn ESE 535 Spring 2009 -- DeHon

Rerouting

« Effect of only reroute congested?
— maybe more iterations
« (not reroute a signal until congested)
—less time
— ? Better convergence
— ? Hurt quality?
* (not see strong case for)
— ...but might hurt delay quality

» Maybe followup rerouting everything once clear
up congesiton?

29
Penn ESE 535 Spring 2009 -- DeHon

Run Time?

* Route |E| edges

* Each path search O(|Eg,|) Worst case
—...generally less

* lterations?

Penn ESE 535 Spring 2009 -- DeHon

Quality and Runtime Experiment

For Synthetic netlists gﬁ ﬁﬁ

on HSRA = : i
— Expect to be worst-case < H
propblems § Eﬁ ﬁ fg
Number of individual
route trials limited
(measured) as multiple
of nets in design
— (not measuring work HC R

per route trial) §ﬁ% ﬁmﬁ

Penn ESE 535 Spring 2009 -- DeHon

&

Quiality: fixed runtime

Quality Ratio for Fixed Route Trials
2.8

26

24|
22|

Py
1.8
16
1.4

Worst-Case Quality Ratio

1.2

10 100 1000 10000

Graph Size (nodes)
Penn ESE 535 Spring 2009 -- DeHon

Quiality Target

Route Trials for Fixed Ratio Targets

20 r——
ratio 1.50 ——

ratip 1.75 -roereeem
ratio 2,00

Route Trials per Met
=

Quality vs. Time

Quality vs. Route Trials

1000 .

size=1f —
P R—
size=128

@

Z 100 . |

a $ize=1024 ~-s--

2 gize=2048 ==

[]

] .

= sy

2

a 10

i

! 12 14 16

Quality Ratio

Penn ESE 535 Spring 2009 -- DeHon

5 F
0 :
10 100 1000 10000
Graph Size (nodes) 3
Penn ESE 535 Spring 2009 -- DeHon
Conclusions?

* Iterations increases with N
» Quality degrade as we scale?

Penn ESE 535 Spring 2009 -- DeHon

Search Ordering

» Default: breadth first search for shortest
— O(total-paths)
— O(NP) for HSRA

« Alternately: use A*:

— estimated costs/path length, prune
candidates earlier

—can be more depth first

« (search promising paths as long as know can’t
be worse)

Penn ESE 535 Spring 2009 -- DeHon

BFS > A* BFS vs. A*

« Start at source

¢ Put src node in priority queue with cost 0
— Priority queue orders by cost

— Cost = X (path so far) + min path to dest

« While (not found sink)

— Pop least cost node from queue

« Get: current_node, current_cost

— Is this sink? - found
— For each outgoing edge
+ Push destination onto queue
« with cost current_cost+edge_cost

Penn ESE 535 Spring 2009 -- DeHon Penn ESE 535 Spring 2009 -- DeHon

Single-side, Directed (A*) Search: one-side vs. two-sides

[HEEEEE

|
Only expand search windows as I
prove necessary to have longer reute.

Penn ESE 535 Spring 2009 -- DeHon

Penn ESE 535 Spring 2009 -- DeHon

Search: Oblivious vs. Directed Searching
(BFS vs. A%) * In general:

— greedy/depth first searching ; * _
[[« find a path faster o~

» may be more expensive LEESS
— (not least delay, congest cost)
- — tradeoff by weighting
— - { . es?irrsated delay on remaining path vs. cost to this
| poin

« control greediness of router

] o — More greedy is faster at cost of less optimal
paths (wider channels)

* 40% W -> 10x time reduction [Tessier/thesis’98]

Penn ESE 535 Spring 2009 -- DeHon

Penn ESE 535 Spring 2009 -- DeHon

Searching

* Use A* like search

— Always expanded (deepen) along shortest
...as long as can prove no other path will
dominate

— Uncongested: takes O(path-length) time
— Worst-case reduces to breadth-first

» O(total-paths)

¢ O(NP) for HSRA

Penn ESE 535 Spring 2009 -- DeHon

Mesh Expand

1 45
Penn ESE 535 Spring zuuy - Denon

Conventional FPGA Domains

obdbl 1]

Called:
subset
disjoint

Penn ESE 535 Spring 2009 -- DeHon

Domain Negotiation

» For Conventional FPGAs (and many
networks)
— path freedom
« bushy in middle
« low on endpoints

Penn ESE 535 Spring 2009 -- DeHon

Multistage/Benes

VDSV
X e oK
1"“‘91‘91‘!

C

JﬁWAEbI:ICEnW'{L
_IA\‘_H QHQWA_
‘!E'A.‘P ‘E?A"!A."l‘_

Switches in all paths 0000 to 1111

Penn ESE 535 Spring 2009 -- DeHon

Conventional FPGA Domains

Called:
subset
disjoint

Penn ESE 535 Spring 2009 -- DeHon

Domain Routing

l

¢ No point in
searching along
an entire path
from source

 Just to find it's
heavily
congested at
sink

Penn ESE 535 Spring 2009 -- DeHon

HSRA Domains

e A
s | T et
o U o o

N=d
5

N

HECRTE fiﬁ}:g:i‘;ﬁ

35 aprmgﬂ_;[uuy - DeHon

il

Penn ESE

I

Domain Negotiation

« Path bottlenecks exist at both endpoints
« Most critical place for congestion
* Most efficient: work search from both ends
— more limiting in A* search
— focus on paths with least (no) congestion on
endpoints first
— FPGAs -- picking “domain” first
— otherwise paths may look equally good up to end
(little pruning)

Penn ESE 535 Spring 2009 -- DeHon

Summary

 Finding short path easy/well known
» Complication: need to route set of
signals
—who gets which path?
— Arbitrary decisions earlier limit options later
* |dea: iterate/relax using congestion
history
— update path costs based on congestion
» Cost adaptive to route
— reroute with new costs

« Accommodate delay and congestion |,

Penn ESE 535 Spring 2009 -- DeHon

Admin

* Online Course Evaluations
— http://www.upenn.edu/eval
» Reading: online
» Assignment 5: Due Wednesday
» Assignment 6: now online

Penn ESE 535 Spring 2009 -- DeHon

Big Ideas

» Exploit freedom
» Technique:
— Graph algorithms (BFS, DFS)
— Search techniques: A*
— Iterative improvement/relaxation
— Adaptive cost refinement

Penn ESE 535 Spring 2009 -- DeHon

