ESE535: Electronic Design Automation

Day 5: February 2, 2009 Architecture Synthesis (Provisioning, Allocation)

Penn ESE535 Spring 2009 -- DeHon

Today

- Problem
- Brute-Force/Exhaustive
- Greedy
- Estimators
- LP/ILP Provision
- · ILP Schedule and Provision

Penn ESE535 Spring 2009 - DeHor

2005 - Berlon

Previously

- General formulation for scheduled operator sharing
 - VLIW
- Fast algorithms for scheduling onto fixed resource set
 - List Scheduling

enn ESE535 Spring 2009 -- DeHon

Today: Provisioning

- Given
 - An area budget
 - A graph to schedule
 - A Library of operators
- · Determine:
 - Best (delay minimizing) set of operators
 - i.e. select the operator set

Penn ESE535 Spring 2009 - DeHon

Exhaustive

- 1. Identify all area-feasible operator sets
 - E.g. preclass exercise
- 2. Schedule for each
- 3. Select best
- → optimal
- · Drawbacks?

Penn ESE535 Spring 2009 -- DeHon

Exhaustive

- How large is space of feasible operator sets?
 - As function of
 - operator types N
 - Types: add, multiply, divide,
 - Maximum number of operators of type M

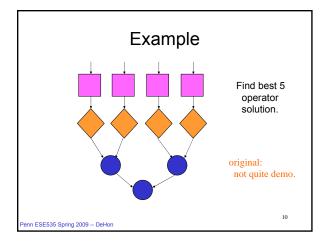
enn ESE535 Spring 2009 – DeHon

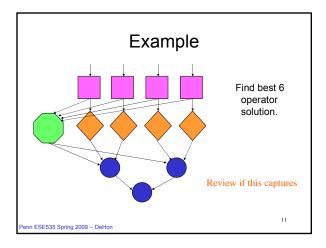
Size of Feasible Space

- · Consider 10 operators
 - For simplicity all of unit area
- · Total area of 100
- · How many cases?

Penn ESE535 Spring 2009 -- DeHor

Implication


• Feasible operator space can be too large to explore exhaustively


Penn ESE535 Spring 2009 - DeHon

Greedy Incremental

- Start with one of each operator
- While (there is area to hold an operator)
 - Which single operator
 - Can be added without exceeding area limit?
 - · And Provides largest benefit?
 - Add one operator of that type
- · How long does this run?
- Weakness?

Penn ESE535 Spring 2009 - DeHon

Estimators

- · Scheduling expensive
 - -O(|E|) or O(|E|*log(|V|)) using list-schedule
- Results not analytic
 - Cannot write an equation around them
- Saw earlier bounds sometimes useful
 - No precedence → is resource bound
 - Often one bound dominates

Penn ESE535 Spring 2009 - DeHon

Estimations

- Step 1: estimate with resource bound
 O(|E|) vs. O(N) evaluation
- Step 2: use estimate in equations
 T=max(N₁/R₁,N₂/R₂,....)

Penn ESE535 Spring 2009 -- DeHor

13

LP Formulation

- · Linear Programming
- Formulate set of linear equation constraints (inequalities)
 - $Ax_0+Bx_1+Cx_2 \le D$
 - $x_0 + x_1 = 1$
 - A,B,C,D constants
 - x_i variables to satisfy
- Solve in polynomial time
 - Software packages exist
- · Solutions are real (not integers)

Penn ESE535 Spring 2009 - DeHon

14

LP Constraints

- · Let A_i be area of operator type i
- Let x_i by number of operators of type i

$$\sum A_i \times x_i \le Area$$

Penn ESE535 Spring 2009 -- DeHor

Achieve Time Target

- Want to achieve a schedule in T cycles
- Each resource bound must be less than T cycles:
 - $N_i/x_i < T$
- But do we know T?
- · Do binary search for minimum T
 - How does that impact solution time?

Penn ESE535 Spring 2009 – DeHon

16

LP returns reals

- Solution to LP will be reals
 X₀ = 1.76
- · Not constrained to integers
- · Try to round results
 - Sometimes works well enough
 - For some problems, can prove optimal

Penn ESE535 Spring 2009 -- DeHon

17

ILP

- · Integer Linear Programming
- · Can constrain variables to integers
- No longer polynomial time guarantee
 - But often practical
 - Solvers exist
- Option: ILP formulation on estimates

enn ESE535 Spring 2009 - DeHon

ILP Provision and Schedule

• Possible to formulate whole operator selection and scheduling as ILP problem

n ESE535 Spring 2009 - DeHon

19

Formulation

- · Integer variables Mi
 - number of operators of type i
- 0-1 (binary) variables x_{i,j}
 1 if node I is scheduled into timestep j
 - 0 otherwise
- · Variable assignment completely specifies schedule
- This formulation also for achieving a target time T
 - j ranges 0 to T-1

nn ESE535 Spring 2009 – DeHon

Constraints

- 1. Total area constraints
- 2. Not assign too many things to a timestep
- 3. Assign every node to some timestep
- 4. Maintain precedence

enn ESE535 Spring 2009 -- DeHon

(1) Total Area

· Same as before

$$\sum A_i \times M_i \le Area$$

(2) Not overload timestep

- · For each timestep j
 - For each operator type k

$$\sum_{o_i \in FU_k} x_{i,j} \leq M_k$$

enn ESE535 Spring 2009 -- DeHon

(3) Node is scheduled

· For each node in graph

$$\sum_{j} x_{i,j} = 1$$

Can narrow to sum over slack window.

enn ESE535 Spring 2009 - DeHon

(4) Precedence Holds

• For each edge from node i to node k

$$\sum_{j} j \times x_{i,j} - \sum_{j} j \times x_{k,j} \le -1$$

Can narrow to sum over slack windows.

Penn ESE535 Spring 2009 - DeHor

25

Round up Algorithms and Runtimes

- · Exhaustive Schedule
- Exhaustive Resource Bound Estimate
- · Greedy Schedule
- · LP on estimates
 - Particular time bound
 - Minimize time
- · ILP on estimates and exact
 - Particular time bound
 - Minimize time

Penn ESE535 Spring 2009 - DeHon

26

Admin

- · Assignment 2 out
 - Programming assignment
 - Now in two pieces
- · Reading on web

enn ESE535 Spring 2009 - DeHon

27

Big Ideas:

- Estimators
- · Dominating Effects
- Reformulate as a problem we already have a solution for

- LP, ILP

· Technique: Greedy

· Technique: ILP

Penn ESE535 Spring 2009 -- DeHon