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ESE535:
Electronic Design Automation

Day 9:  February 16, 2009
Partitioning

(Intro, KLFM)
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Today

• Partitioning
– why important
– practical attack
– variations and issues
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Motivation (1)

• Divide-and-conquer
– trivial case: decomposition
– smaller problems easier to solve 

• net win, if super linear
• Part(n)  + 2×T(n/2) < T(n)

– problems with sparse connections  or 
interactions

– Exploit structure
• limited cutsize is a common structural property
• random graphs would not have as small cuts 
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Motivation (2)

• Cut size (bandwidth) can determine 
area

• Minimizing cuts
– minimize interconnect requirements
– increases signal locality

• Chip (board) partitioning
– minimize IO

• Direct basis for placement
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Bisection Bandwidth
• Partition design into two equal size halves
• Minimize wires (nets) with ends in both 

halves
• Number of wires crossing is bisection 

bandwidth
• lower bw = more locality

N/2

N/2

cutsize
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Interconnect Area

• Bisection is lower-
bound on IC width
– When wire 

dominated, may be 
tight bound

• (recursively)
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Classic Partitioning Problem

• Given: netlist of interconnect cells
• Partition into two (roughly) equal halves 

(A,B)
• minimize the number of nets shared by 

halves
• “Roughly Equal”

– balance condition:  (0.5-δ)N≤|A|≤(0.5+δ)N
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Balanced Partitioning

• NP-complete for general graphs
– [ND17: Minimum Cut into Bounded Sets, 

Garey and Johnson]
– Reduce SIMPLE MAX CUT
– Reduce MAXIMUM 2-SAT to SMC
– Unbalanced partitioning poly time

• Many heuristics/attacks
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KL FM Partitioning Heuristic

• Greedy, iterative
– pick cell that decreases cut and move it
– repeat

• small amount of non-greediness:
– look past moves that make locally worse
– randomization
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Fiduccia-Mattheyses
(Kernighan-Lin refinement)

• Start with two halves (random split?)
• Repeat until no updates

– Start with all cells free
– Repeat until no cells free

• Move cell with largest gain (balance allows)
• Update costs of neighbors
• Lock cell in place (record current cost)

– Pick least cost point in previous sequence and 
use as next starting position

• Repeat for different random starting points
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Efficiency

Tricks to make efficient:
• Expend little work picking move candidate

– Constant work ≡ O(1)
– Means amount of work not dependent on problem 

size
• Update costs on move cheaply [O(1)]
• Efficient data structure 

– update costs cheap
– cheap to find next move
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Ordering and Cheap Update

• Keep track of Net gain on node == delta 
net crossings to move a node

cut cost after move = cost - gain
• Calculate node gain as Σ net gains for 

all nets at that node
– Each node involved in several nets

• Sort nodes by gain

B

A C
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FM Cell Gains

-4

+4

2

0

1

0

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node
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After move node?

• Update cost
– Newcost=cost-gain

• Also need to update gains
– on all nets attached to moved node
– but moves are nodes, so push to

• all nodes affected by those nets
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Composability of Net Gains

-1

-1 +1 0

-1

-1+1-0-1 = -1
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FM Recompute Cell Gain
• For each net, keep track of number of cells in 

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)
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FM Recompute Cell Gain
• For each net, keep track of number of cells in 

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)

– if T(net)==1, decrement gain on T side of net
• (think 1=>0)
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FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)
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FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell
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FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell
– if F(net)==0, decrement gain on all cells (T)
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FM Recompute Cell Gain
• For each net, keep track of number of cells in 

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)

– if T(net)==1, decrement gain on T side of net
• (think 1=>0)

– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell
– if F(net)==0, decrement gain on all cells (T)
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0

+1 0 0 0
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FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0

+1 0 0 0

-1 -1 -1 -1
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FM Data Structures
• Partition Counts A,B
• Two gain arrays 

– One per partition
– Key: constant time 

cell update

• Cells
– successors 

(consumers)
– inputs
– locked status

Binned by cost constant time update
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FM Optimization Sequence 
(ex)
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FM Running Time?
• Randomly partition into two halves
• Repeat until no updates

– Start with all cells free
– Repeat until no cells free

• Move cell with largest gain
• Update costs of neighbors
• Lock cell in place (record current cost)

– Pick least cost point in previous sequence and 
use as next starting position

• Repeat for different random starting points
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FM Running Time
• Claim: small number of passes to converge

– Constant passes?
• Small (constant?) number of random starts
• N cell updates each round (swap)
• Updates K + fanout work (avg. fanout K)

– assume at most K inputs to each node
– For every net attached (K+1)

• For every node attached to those nets (O(K))
• Maintain ordered list O(1) per move

– every io move up/down by 1
• Running time: O(K2N)

– Algorithm significant for its speed 
• (more than quality)
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FM Starts?

21K random starts, 3K network -- Alpert/Kahng

So, FM gives 
a not bad
solution 
quickly
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Weaknesses?
• Local, incremental moves only

– hard to move clusters
– no lookahead

• Looks only at local structure
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Improving FM

• Clustering
• Initial partitions
• Runs
• Partition size freedom
• Replication

Following comparisons from Hauck and Boriello ‘96
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Clustering

• Group together several leaf cells into 
cluster

• Run partition on clusters
• Uncluster (keep partitions)

– iteratively
• Run partition again

– using prior result as starting point
• instead of random start
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Clustering Benefits
• Catch local connectivity which FM might 

miss
– moving one element at a time, hard to see 

move whole connected groups across 
partition

• Faster (smaller N)
– METIS -- fastest research partitioner

exploits heavily
– FM work better w/ larger nodes (???)
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How Cluster?
• Random

– cheap, some benefits for speed
• Greedy “connectivity”

– examine in random order
– cluster to most highly connected
– 30% better cut, 16% faster than random

• Spectral (next time)
– look for clusters in placement
– (ratio-cut like)

• Brute-force connectivity (can be O(N2))
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Initial Partitions?
• Random
• Pick Random node for one side

– start imbalanced
– run FM from there

• Pick random node and Breadth-first 
search to fill one half

• Pick random node and Depth-first 
search to fill half

• Start with Spectral partition
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Initial Partitions

• If run several times
– pure random tends to win out

– more freedom / variety of starts
– more variation from run to run
– others trapped in local minima
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Number of Runs
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Number of Runs

• 2 - 10%
• 10 - 18%
• 20 <20% (2% better than 10)
• 50            (4% better than 10)
• …but?
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FM Starts?

21K random starts, 3K network -- Alpert/Kahng
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Unbalanced Cuts

• Increasing slack in partitions
– may allow lower cut size
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Unbalanced Partitions

Following comparisons from Hauck and Boriello ‘96

Small/large is benchmark size not small/large partition IO.
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Replication

• Trade some additional logic area for 
smaller cut size 
– Net win if wire dominated

Replication data from: Enos, Hauck, Sarrafzadeh ‘97
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Replication

• 5% 38% cut size reduction
• 50% 50+% cut size reduction
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What Bisection doesn’t tell us

• Bisection bandwidth purely geometrical
• No constraint for delay

– I.e. a partition may leave critical path 
weaving between halves
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Critical Path and Bisection

Minimum cut may cross critical path multiple times.
Minimizing long wires in critical path => increase cut size.
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So...

• Minimizing bisection
– good for area
– oblivious to delay/critical path
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Partitioning Summary

• Decompose problem
• Find locality
• NP-complete problem
• linear heuristic (KLFM)
• many ways to tweak

– Hauck/Boriello, Karypis
• even better with replication
• only address cut size, not critical path delay

Penn ESE535 Spring 2009 -- DeHon
51

Admin

• Reading for Wed. online
• No class next Monday (23rd)

– Use time to finish Assignment 2B
• Due 25th
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Today’s Big Ideas:
• Divide-and-Conquer
• Exploit Structure

– Look for sparsity/locality of interaction
• Techniques:

– greedy
– incremental improvement
– randomness avoid bad cases, local minima
– incremental cost updates (time cost)
– efficient data structures


