
1

Penn ESE535 Spring 2009 -- DeHon
1

ESE535:
Electronic Design Automation

Day 9: February 16, 2009
Partitioning

(Intro, KLFM)

Penn ESE535 Spring 2009 -- DeHon
2

Today

• Partitioning
– why important
– practical attack
– variations and issues

Penn ESE535 Spring 2009 -- DeHon
3

Motivation (1)

• Divide-and-conquer
– trivial case: decomposition
– smaller problems easier to solve

• net win, if super linear
• Part(n) + 2×T(n/2) < T(n)

– problems with sparse connections or
interactions

– Exploit structure
• limited cutsize is a common structural property
• random graphs would not have as small cuts

Penn ESE535 Spring 2009 -- DeHon
4

Motivation (2)

• Cut size (bandwidth) can determine
area

• Minimizing cuts
– minimize interconnect requirements
– increases signal locality

• Chip (board) partitioning
– minimize IO

• Direct basis for placement

Penn ESE535 Spring 2009 -- DeHon
5

Bisection Bandwidth
• Partition design into two equal size halves
• Minimize wires (nets) with ends in both

halves
• Number of wires crossing is bisection

bandwidth
• lower bw = more locality

N/2

N/2

cutsize

Penn ESE535 Spring 2009 -- DeHon
6

Interconnect Area

• Bisection is lower-
bound on IC width
– When wire

dominated, may be
tight bound

• (recursively)

2

Penn ESE535 Spring 2009 -- DeHon
7

Classic Partitioning Problem

• Given: netlist of interconnect cells
• Partition into two (roughly) equal halves

(A,B)
• minimize the number of nets shared by

halves
• “Roughly Equal”

– balance condition: (0.5-δ)N≤|A|≤(0.5+δ)N

Penn ESE535 Spring 2009 -- DeHon
8

Balanced Partitioning

• NP-complete for general graphs
– [ND17: Minimum Cut into Bounded Sets,

Garey and Johnson]
– Reduce SIMPLE MAX CUT
– Reduce MAXIMUM 2-SAT to SMC
– Unbalanced partitioning poly time

• Many heuristics/attacks

Penn ESE535 Spring 2009 -- DeHon
9

KL FM Partitioning Heuristic

• Greedy, iterative
– pick cell that decreases cut and move it
– repeat

• small amount of non-greediness:
– look past moves that make locally worse
– randomization

Penn ESE535 Spring 2009 -- DeHon
10

Fiduccia-Mattheyses
(Kernighan-Lin refinement)

• Start with two halves (random split?)
• Repeat until no updates

– Start with all cells free
– Repeat until no cells free

• Move cell with largest gain (balance allows)
• Update costs of neighbors
• Lock cell in place (record current cost)

– Pick least cost point in previous sequence and
use as next starting position

• Repeat for different random starting points

Penn ESE535 Spring 2009 -- DeHon
11

Efficiency

Tricks to make efficient:
• Expend little work picking move candidate

– Constant work ≡ O(1)
– Means amount of work not dependent on problem

size
• Update costs on move cheaply [O(1)]
• Efficient data structure

– update costs cheap
– cheap to find next move

Penn ESE535 Spring 2009 -- DeHon
12

Ordering and Cheap Update

• Keep track of Net gain on node == delta
net crossings to move a node

cut cost after move = cost - gain
• Calculate node gain as Σ net gains for

all nets at that node
– Each node involved in several nets

• Sort nodes by gain

B

A C

3

Penn ESE535 Spring 2009 -- DeHon
13

FM Cell Gains

-4

+4

2

0

1

0

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node

Penn ESE535 Spring 2009 -- DeHon
14

After move node?

• Update cost
– Newcost=cost-gain

• Also need to update gains
– on all nets attached to moved node
– but moves are nodes, so push to

• all nodes affected by those nets

Penn ESE535 Spring 2009 -- DeHon
15

Composability of Net Gains

-1

-1 +1 0

-1

-1+1-0-1 = -1

Penn ESE535 Spring 2009 -- DeHon
16

FM Recompute Cell Gain
• For each net, keep track of number of cells in

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)

Penn ESE535 Spring 2009 -- DeHon
17

FM Recompute Cell Gain
• For each net, keep track of number of cells in

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)

– if T(net)==1, decrement gain on T side of net
• (think 1=>0)

Penn ESE535 Spring 2009 -- DeHon
18

FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)

4

Penn ESE535 Spring 2009 -- DeHon
19

FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell

Penn ESE535 Spring 2009 -- DeHon
20

FM Recompute Cell Gain
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
– if T(net)==1, decrement gain on T side of net
– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell
– if F(net)==0, decrement gain on all cells (T)

Penn ESE535 Spring 2009 -- DeHon
21

FM Recompute Cell Gain
• For each net, keep track of number of cells in

each partition [F(net), T(net)]
• Move update:(for each net on moved cell)

– if T(net)==0, increment gain on F side of net
• (think -1 => 0)

– if T(net)==1, decrement gain on T side of net
• (think 1=>0)

– decrement F(net), increment T(net)
– if F(net)==1, increment gain on F cell
– if F(net)==0, decrement gain on all cells (T)

Penn ESE535 Spring 2009 -- DeHon
22

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

Penn ESE535 Spring 2009 -- DeHon
23

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

Penn ESE535 Spring 2009 -- DeHon
24

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

5

Penn ESE535 Spring 2009 -- DeHon
25

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0

Penn ESE535 Spring 2009 -- DeHon
26

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0

+1 0 0 0

Penn ESE535 Spring 2009 -- DeHon
27

FM Recompute (example)

[note markings here
are deltas…earlier
pix were absolutes]

+1 +1 +1 +1

-1000

0 0 0 0

+1 0 0 0

-1 -1 -1 -1

Penn ESE535 Spring 2009 -- DeHon
28

FM Data Structures
• Partition Counts A,B
• Two gain arrays

– One per partition
– Key: constant time

cell update

• Cells
– successors

(consumers)
– inputs
– locked status

Binned by cost constant time update

Penn ESE535 Spring 2009 -- DeHon
29

FM Optimization Sequence
(ex)

Penn ESE535 Spring 2009 -- DeHon
30

FM Running Time?
• Randomly partition into two halves
• Repeat until no updates

– Start with all cells free
– Repeat until no cells free

• Move cell with largest gain
• Update costs of neighbors
• Lock cell in place (record current cost)

– Pick least cost point in previous sequence and
use as next starting position

• Repeat for different random starting points

6

Penn ESE535 Spring 2009 -- DeHon
31

FM Running Time
• Claim: small number of passes to converge

– Constant passes?
• Small (constant?) number of random starts
• N cell updates each round (swap)
• Updates K + fanout work (avg. fanout K)

– assume at most K inputs to each node
– For every net attached (K+1)

• For every node attached to those nets (O(K))
• Maintain ordered list O(1) per move

– every io move up/down by 1
• Running time: O(K2N)

– Algorithm significant for its speed
• (more than quality)

Penn ESE535 Spring 2009 -- DeHon
32

FM Starts?

21K random starts, 3K network -- Alpert/Kahng

So, FM gives
a not bad
solution
quickly

Penn ESE535 Spring 2009 -- DeHon
33

Weaknesses?
• Local, incremental moves only

– hard to move clusters
– no lookahead

• Looks only at local structure

Penn ESE535 Spring 2009 -- DeHon
34

Improving FM

• Clustering
• Initial partitions
• Runs
• Partition size freedom
• Replication

Following comparisons from Hauck and Boriello ‘96

Penn ESE535 Spring 2009 -- DeHon
35

Clustering

• Group together several leaf cells into
cluster

• Run partition on clusters
• Uncluster (keep partitions)

– iteratively
• Run partition again

– using prior result as starting point
• instead of random start

Penn ESE535 Spring 2009 -- DeHon
36

Clustering Benefits
• Catch local connectivity which FM might

miss
– moving one element at a time, hard to see

move whole connected groups across
partition

• Faster (smaller N)
– METIS -- fastest research partitioner

exploits heavily
– FM work better w/ larger nodes (???)

7

Penn ESE535 Spring 2009 -- DeHon
37

How Cluster?
• Random

– cheap, some benefits for speed
• Greedy “connectivity”

– examine in random order
– cluster to most highly connected
– 30% better cut, 16% faster than random

• Spectral (next time)
– look for clusters in placement
– (ratio-cut like)

• Brute-force connectivity (can be O(N2))
Penn ESE535 Spring 2009 -- DeHon

38

Initial Partitions?
• Random
• Pick Random node for one side

– start imbalanced
– run FM from there

• Pick random node and Breadth-first
search to fill one half

• Pick random node and Depth-first
search to fill half

• Start with Spectral partition

Penn ESE535 Spring 2009 -- DeHon
39

Initial Partitions

• If run several times
– pure random tends to win out

– more freedom / variety of starts
– more variation from run to run
– others trapped in local minima

Penn ESE535 Spring 2009 -- DeHon
40

Number of Runs

Penn ESE535 Spring 2009 -- DeHon
41

Number of Runs

• 2 - 10%
• 10 - 18%
• 20 <20% (2% better than 10)
• 50 (4% better than 10)
• …but?

Penn ESE535 Spring 2009 -- DeHon
42

FM Starts?

21K random starts, 3K network -- Alpert/Kahng

8

Penn ESE535 Spring 2009 -- DeHon
43

Unbalanced Cuts

• Increasing slack in partitions
– may allow lower cut size

Penn ESE535 Spring 2009 -- DeHon
44

Unbalanced Partitions

Following comparisons from Hauck and Boriello ‘96

Small/large is benchmark size not small/large partition IO.

Penn ESE535 Spring 2009 -- DeHon
45

Replication

• Trade some additional logic area for
smaller cut size
– Net win if wire dominated

Replication data from: Enos, Hauck, Sarrafzadeh ‘97
Penn ESE535 Spring 2009 -- DeHon

46

Replication

• 5% 38% cut size reduction
• 50% 50+% cut size reduction

Penn ESE535 Spring 2009 -- DeHon
47

What Bisection doesn’t tell us

• Bisection bandwidth purely geometrical
• No constraint for delay

– I.e. a partition may leave critical path
weaving between halves

Penn ESE535 Spring 2009 -- DeHon
48

Critical Path and Bisection

Minimum cut may cross critical path multiple times.
Minimizing long wires in critical path => increase cut size.

9

Penn ESE535 Spring 2009 -- DeHon
49

So...

• Minimizing bisection
– good for area
– oblivious to delay/critical path

Penn ESE535 Spring 2009 -- DeHon
50

Partitioning Summary

• Decompose problem
• Find locality
• NP-complete problem
• linear heuristic (KLFM)
• many ways to tweak

– Hauck/Boriello, Karypis
• even better with replication
• only address cut size, not critical path delay

Penn ESE535 Spring 2009 -- DeHon
51

Admin

• Reading for Wed. online
• No class next Monday (23rd)

– Use time to finish Assignment 2B
• Due 25th

Penn ESE535 Spring 2009 -- DeHon
52

Today’s Big Ideas:
• Divide-and-Conquer
• Exploit Structure

– Look for sparsity/locality of interaction
• Techniques:

– greedy
– incremental improvement
– randomness avoid bad cases, local minima
– incremental cost updates (time cost)
– efficient data structures

