ESE535 Spring 2011

University of Pennsylvania
Department of Electrical and Systems Engineering
Electronic Design Automation

ESE535, Spring 2011 Assignment #8 Monday, April 25

Due: Monday, May 9, 12PM (noon).

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration There is no collaboration on this exercise.

Please include a statement on your final submission:

I, your-name-here, certify that I have complied with the
University of Pennsylvania’s Code of Academic Integrity
in completing this final exercise.

You can review the Code of Academic Integrity here: http://www.upenn.edu/academicintegrity/
ai_codeofacademicintegrity.html

Questions Email instructor with any questions you have to clarify the assignment prob-
lems. Instructor will be traveling May 1-6, so do not expect a timely response during that
week. Recommendation is to pose your questions before May 1st.

Writeup Turn-in assignments on blackboard (PDF preferred). See details on course web
page. No handwriting or hand-drawn figures. State any assumptions you need to make.

Lateness This assignment cannot be turned in late for partial credit.

Grading You will be graded on the best 3 answers turned in. Each problem is worth 5
points, for a total of 15 possible points. You may choose to complete only three answers or
to complete all four.



ESE535 Spring 2011

Problems

1. Formulate Instantaneous Single-Corner Turn Routing as a SAT decision problem. Use
the architecture model from Assignment 5, except we are only concerned with mini-
mizing ctinstant:

Clinstant(T,Y) = max Clinstant. (T, Y
snstant (7 9) all timesteps j ( snatant; >>

Clinstant = max Clinstan x,
tant all PEs (x,y)< ‘ t( y))

The SAT decision problem will be for a particular number of corner turns and timesteps;
the problem should be satisfiable if-and-only-if the placed netlist is routable in the
specified number of corner turns and timesteps. Your answer should describe how the
SAT formula is composed when you want to ask for any particular number of corner
turns and timesteps. Assume you have already placed the design and you have already
determined the ASAP and ALAP times for each of the nodes.

(a) define the Boolean variables you will use

(b) identify the classes of constraints to impose

(c) describe how to generate the clauses to implement each constraint
(d) describe how to go from a satisfying assignment to a legal route



ESEb535

Spring 2011

2. Develop an optimization routine to reduce the logic required for datapath synthesis by

sharing Common Operator Subgraphs between two hyperblocks that are known not
to execute simultaneously. In Callahan’s compilation of C to reconfigurable logic, he
generated a set of hyperblocks that he then mapped to spatial logic on an FPGA. Only
one of the hyperblocks is ever active at a time. Consequently, it might be beneficial
to share logic between hyperblocks. The most trivial case would be two hyperblocks
that contained equivalent dataflow graphs (here equivalence would be the choice of
operators and their connectivity; the input control flow and input variables might be
different between the two hyperblocks; similarly, the output variables and control flow
might be different as well). A more general case would be to share some subset of the
dataflow graph (e.g. maybe one graph computes Z=(A+B+C*D)>>2 and another
computes Q=(R+S+T*U)%T7; both graphs share the subgraph i1+i2+i3*i4).

Provide an algorithm to minimize the amount of unique datapath logic required by
maximally sharing subgraphs among a pair of hyperblocks. That is, your goal is to
minimize the area of the operators that must be spatially implemented, including any
muxes that you add to the logic to allow subgraph sharing.

Assume you have:
e A finite set of operators (e.g., +, *, -, %, >> ¢), and an area cost for each (e.g.,

area(+), area(*)).
e An area cost for the 2-input multiplexer (i.e., area(mux2)).

(a) Provide an English description of your strategy.
(b) Provide pseudocode for your mapping algorithm.
(¢) Show how your algorithm works on:

’ \ Hyperblock 1 \ \ Hyperblock 2 ‘

1| t1=A-B t1=Q-R
2 | t2=abs(C) t2=abs(t1)
3 | t3=ilog2(D) £3=S<< 2
4| t4=t2413 t4=T+U
5 | th=E*t4 t5=t3+t4
6 | t6=t1*t5 t6=t5*t2
7| Y=t6+F Y=t6+V

mux2 2

=+, - 3

when we have the costs: <<2 1
abs 3

ilog2 4

* 30

’ Operator \ Area ‘




ESE535 Spring 2011

3. Perform two-level logic optimization to minimize Pterm switching energy. In addition
to the unoptimized two-level logic, assume that you have as input:

e P(m;, m;)=probability that input switches from minterm m; to minterm m; for
all minterm pairs.

e P(i)=the switching probability for input i.

E(p) = Pp) x Cor X Npuse(p) + Cana X > (P@) | (1)
all inputs i appearing in p

B = > (E() (2)

all pterms p

Npuse(p) is the number of outputs that use Pterm p

(a) Define P(p) in terms of P(m;, m;)’s.
(b) Revise Prime Implicant covering to solve this problem:
i. Provide an English description of your strategy

ii. Show pseudocode for your revised algorithm



ESE535 Spring 2011

4. Optimize an FSM by identifying and removing redundant states.

(a) Define the conditions under which two states are equivalent.
(b) Describe how you would efficiently verify this condition.
(c¢) Develop an algorithm to remove all redundant states from an FSM
i. Provide an English description of your strategy
ii. Show pseudocode for your algorithm
iii. Identify the runtime complexity of your algorithm as a function of |S|, the
number of states in the original FSM and |E|, the number of edges in the
original FSM.



