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ESE535: 
Electronic Design Automation 

Day 15:  March 16, 2011 
Architecture Synthesis 

(Provisioning, Allocation) 
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Today 

•  Problem 
•  Brute-Force/Exhaustive 
•  Greedy 
•  Estimators 
•  Analytical Provisioning  
•  ILP Schedule and Provision 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Previously 

•  General formulation for scheduled 
operator sharing  
–   VLIW 

•  Fast algorithms for scheduling onto 
fixed resource set 
– List Scheduling 
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VLIW 

Address 
Instruction 
Memory 

+ X X 

Today 
•  How do we determine the set of 

resources? 
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+ X X 
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Today: Provisioning 

•  Given 
– An area budget 
– A graph to schedule 
– A library of operators 

•  Determine:  
– Delay minimizing set of operators 

•  Or delay-achieving set of operators 
–  i.e. select the operator set  

+ X X 
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Exhaustive 

1.  Identify all area-feasible operator sets 
–  E.g. preclass exercise 

2.  Schedule for each 
3.  Select best 

•   optimal 
•  Drawbacks? 
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Exhaustive 

•  How large is space of feasible operator 
sets? 
– As function of  

•  operator types – N 
– Types: add, multiply, divide, …. 

•  Maximum number of operators of type M 

€ 

MN
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Size of Feasible Space 

•  Consider 10 operators 
– For simplicity all of unit area 

•  Total area of 100 

•  How many cases? 

€ 

100
9

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ 2 ×1012
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Implication 

•  Feasible operator space can be too 
large to explore exhaustively 
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Greedy Incremental 

•  Start with one of each operator 
•  While (there is area to hold an operator) 

–  Which single operator 
•  Can be added without exceeding area limit? 
•  And provides largest benefit? 

–  Add one operator of that type 

•  How long does this run? 
–  Tschedule(E)* O(N*M)                 
–           [M = # types, N=final # operators] 

•  Weakness? 
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Example 

Find best 5 
  operator  
  solution. 



3 

Penn ESE535 Spring 2011 -- DeHon 
13 

Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. 
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Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. Sq Dia Circ 

A 

B E 

C F 

D G I 

H 

J 

K 

One of each. 
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Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. Sq Dia Circ 

A,B 

C,D E 

F 

G I 

H 

J 

K 

Two Squares 
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Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. Sq Dia Circ 

A 

B E 

C F 

D G I 

H 

J 

K 

Two Diamonds 
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Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. Sq Dia Circ 

A 

B E 

C F 

D G I 

H 

J 

K 

Two Circles 
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Example 

Find best 5 
  operator  
  solution. 

Incremental addition 
 does not accelerate. 

Which should 
greedy add? 
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Example 

I 

A 

E 

B 

F 

C 

G 

J 

K 

D 

H 

Find best 5 
  operator  
  solution. Sq Dia Circ 

A,B 

C,D E,F 

G,H I 

J 

K 

Two sqs  
+ Two diamonds 

Max effect: 
Incremental 
may not suggest 
next single addition. 

Analytic Formulation 
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Challenge 
•  Scheduling expensive  

– O(|E|) or O(|E|*log(|V|)) using list-schedule 
•  Results not analytic  

– Cannot write an equation around them 
•  Bounds are sometimes useful 

– No precedence  is resource bound 
– Often one bound dominates 

• Latency bound unaffected by 
operator count 

Penn ESE535 Spring 2011 -- DeHon 
22 

Estimations 

•  Step 1: estimate with resource bound 
– O(|E|) vs. O(N) evaluation 

•  Step 2: use estimate in equations 
– T=max(N1/R1,N2/R2,….) 

•  Most useful when RB>>CP 
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Constraints 

•  Let Ai be area of operator type i 
•  Let xi by number of operators of type i 
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Achieve Time Target 

•  Want to achieve a schedule in T cycles 
•  Each resource bound must be less than 

T cycles: 
 Ni/xi ≤ T 
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Algebraic Solve 

•  Set of equations 
– Ni/xi ≤ T 
‒ Σ Ai xi ≤ Area 

•  Assume equality for time bound 
•  Ni/xi=T  xi=Ni/T 
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Rearranging 

Bounding T 

•  Gives Lower Bound on T 

Penn ESE535 Spring 2011 -- DeHon 
27 

Intuition: N of each is right balance given unbounded area; 
                Scale to area available. 

Preclass 

•  What is Tlower for preclass? 
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€ 

T ≥ 1× 8 + 2 × 4
7

=
16
7
≈ 2.3

€ 

T ≥ 3
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Back Substitute from T to x 

•   xi=Ni/T 

•  xi won’t necessarily be integer 
– Round down definitely feasible solution 
– May have room to move a few up by 1 

Preclass 

•  xi=Ni/T 
•  T>=3 
•  Xadd, Xmpy ? 
•  Xadd = 8/3  2 or 3 
•  Xmpy = 4/3  1 or 2 
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Counter Example 

•  1 Unit each 
•  Area = 4 Units 
•  What would analytic predict? 
•  What is best? 
•  How does CP compare to RB? 

•  Analytic Resource Estimate 
– Most useful when RB>>CP 
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Analytic Counter Example 

•  How would greedy 
incremental work on this 
one? 
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ILP 

Maybe we can do exhaustive,  
if we formulate properly. 
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ILP 
•  Integer Linear Programming 
•  Formulate set of linear equation constraints 

(inequalities) 
  Ax0+Bx1+Cx2 ≤ D 
  x0+x1=1 
  A,B,C,D – constants 
  xi – variables to satisfy 
  No products on variables, just linear weighted sums 

•  Can constrain variables to integers 
•  No polynomial time guarantee 

–  But often practical 
–  Solvers exist   (significant piece next lecture) 
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ILP Provision and Schedule 

Now to make it look like an ILP nail… 
•  Formulate operator selection and 

scheduling as ILP problem 
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Formulation 

•  Integer variables Mi  
–   number of operators of type i 

•  0-1 (binary) variables xi,j 
–  1 if node i is scheduled into timestep j 
–  0 otherwise 

•  Variable assignment completely specifies 
operator selection and schedule 

•  This formulation for achieving a target time T  
–   j ranges 0 to T-1 
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Target T  Min T 

•  Formulation targets T 
•  What if we don’t know T?  

– Want to minimize T? 
•  Do binary search for minimum T 

– How does that impact solution time? 
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Constraints 

What properties must hold true for a 
solution to be valid? 

1.  Total area constraints 
2.  Not assign too many things to a 

timestep 
3.  Assign every node to some timestep 
4.  Maintain precedence 
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(1) Total Area 

•  Same as before 
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(2) Not overload timestep 

•  For each timestep j 
– For each operator type k 
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(3)  Node is scheduled 

•  For each node in graph 

Can narrow to sum over slack window. 
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(4) Precedence Holds 

•  For each edge from node src to node snk 

€ 

j × xsrc, j
j
∑ − j × xsnk, j

j
∑ ≤ −1

Can narrow to sum over slack windows. 
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Constraints 

Roughly what provided code is checking 
in sched_main 

1.  Total area constraints 
2.  Not assign too many things to a 

timestep 
3.  Assign every node to some timestep 
4.  Maintain precedence 

ILP Solver 

•  ILP Solver can take these constraints 
and find a solution (satisfying 
assignment) 

•  On Monday, will see how to start to 
make this practical 
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SAT/ILP 
Scheduling Variant 

(Demonstration) 

<if time permits> 
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Two Constraint Challenge 

•  Processing elements have limited 
memory 
–  Instruction memory (data memory) 

•  Tasks have different requirements for 
compute and instruction memory 
–  i.e. Run length not correlated to code 

length 
•  No provisioning, scheduling 
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Plishker Task Example 
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Task 
•  Task: schedule tasks onto PEs obeying 

both memory and compute capacity 
limits 

Example and 
ILP solution 
From 
Plishker et al. 
NSCD2004 
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Task 
•  Task: schedule tasks onto PEs obeying 

both memory and compute capacities 
•   two capacity assignment problem 
•   two capacity bin packing problem 
•  Task: i <Ci,Ii> 
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SAT Packing 
Variables: 

•  Ai,j – task i assigned to 
resource j 

Constraints 
•  Coverage constraints 
•  Uniqueness constraints 
•  Cardinality constraints 

–  PE compute  
–  PE memory 
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Allow Code Sharing 

•  Two tasks of same type can share code 
•  Instead of memory capacity 

– Vector of memory usage 
•  Compute PE Imem vector  

– As OR of task vectors assigned to it 
•  Compute mem space as sum of non-

zero vector entry weights (dot product) 
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Allow Code Sharing 

•  Two tasks of same type can share code 
•  Task has vector of memory uage 

– Task i needs set of instructions k: Ti,k 
•  Compute PE Imem vector  

– OR (all i): PE.Imemj,k+=Ai,j * Ti,k 

•  PE Mem space 
– PE.Total_Imemj= Σ(PE.Imemj,k*Instrs(k)) 
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Symmetries 
•  Many symmetries 
•  Speedup with symmetry breaking 

– Tasks in same class are equivalent 
– PEs indistinguishable 
– Total ordering on tasks and PEs 
– Add constraints to force tasks to be assigned 

to PEs by ordering 
– Plishker claims “significant runtime speedup” 
– Using GALENA [DAC 2003] psuedo-Boolean 

SAT solver 
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Plishker Task Example 
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Results 

SAT/ILP Solve Greedy (first-fit) binpack 

Solutions in < 1 second 
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Why can they do this? 

•  Ignore precedence? 
•  Ignore Interconnect? 

[skipped over this] 
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Why can they do this? 

•  Ignore precedence?  
–  feed forward, buffered 

•  Ignore Interconnect? 
– Through shared memory, not dominant? 

[skipped over this] 
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Interconnect Buffers 

•  Allow “Software Pipelining” 

Each data item 

Spatial we would pipeline, running all three at once 

Think of each schedule instance as one  
timestep in spatial pipeline. 

[skipped over this] 
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Interconnect  
Buffer 

A B C 

50 100 50 

A 

B 

C PE0 

PE1 

A B C 

A B C 

A B C 

A B C 

A
 

B
 

C
 

A
 

B
 

C
 

A
 

B
 

C
 

A
 

B
 

C
 

[skipped over this] 
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Round up Algorithms and 
Runtimes 

•  Exhaustive Schedule 
•  Greedy Schedule 
•  Analytic Estimates 

•  ILP formulation 
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Admin 

•  Assign 5a Monday 
•  Reading for Monday on web 
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Big Ideas: 

•  Estimators 
•  Dominating Effects 
•  Reformulate as a problem we already 

have a solution for 
–  ILP 

•  Technique: Greedy 
•  Technique: ILP 


