
1

Penn ESE535 Spring2011 -- DeHon 1

ESE535:
Electronic Design Automation

Day 1: January 12, 2011
Introduction

Complete questionnaire

Penn ESE535 Spring2011 -- DeHon 2

Warmup Poll
•  How many of you have:

–  Drawn geometry for transistors and wires
–  Sized transistors
–  Placed logic and/or memory cells
–  Selected the individual gates
–  Specified the bit encoding for an FSM
–  Designed a bit-slice for an Adder or ALU
–  Written RTL Verilog or VHDL
–  Written Behavioral Verilog, VHDL, etc. and compiled

to hardware?
–  Compiled C to gates?

Penn ESE535 Spring2011 -- DeHon 3

Modern Design Challenge
•  How do we design modern

computational systems?
– billions of devices
– used in everything
– billion dollar businesses
–  rapidly advancing technology
– more “effects” to address
–  rapidly developing applications and uses
– short product cycles
– extreme time-to-market pressures

Productivity Gap

Penn ESE535 Spring2011 -- DeHon 4 Source: ITRS2009 Design Chapter

Penn ESE535 Spring2011 -- DeHon 5

The Productivity Gap

Source: Newton (UCB/GSRC)
Penn ESE535 Spring2011 -- DeHon 6

Bottleneck

•  Human brain power is the bottleneck
–  to producing new designs
–  to creating new things

•  (applications of technology)

–  to making money

2

Penn ESE535 Spring2011 -- DeHon 7

Avoiding the Bottleneck

•  How do we unburden the human?
– Take details away from him/her

•  raise the level of abstraction at which human
specifies computation

– Pick up the slack
•  machine take over the details

Penn ESE535 Spring2011 -- DeHon 8

DOMAIN
SPECIFIC

RTL

GATE

TRANSISTOR

BEHAVIORAL

Design Productivity by
Approach

a

b

s

q
0

1

d

clk

GATES/WEEK
(Dataquest)

100 - 200

1K - 2K

2K - 10K

8K - 12K

10 - 20

Source: Keutzer (UCB EE 244)

Penn ESE535 Spring2011 -- DeHon 9

To Design, Implement, Verify
10M transistors

a

b

s

q
0

1

d

clk

62.5

125

625

6250

62,500

Power

Delay

Area

Beh

RTL

Staff Months

Source: Keutzer (UCB EE 244) Penn ESE535 Spring2011 -- DeHon 10

Central Questions

•  How do we make the machine fill in the
details (elaborate the design)?

•  How well can it solve this problem?
•  How fast can it solve this problem?

Penn ESE535 Spring2011 -- DeHon 11

Outline

•  Intro/Setup
•  Instructor
•  The Problem
•  Decomposition
•  Costs
•  Not Solved
•  This Class

Penn ESE535 Spring2011 -- DeHon 12

Instructor
•  VLSI/CAD user + Novel Tech. consumer

–  Architect, Computer Designer
–  Spatial designs: FPGAs, Reconfigurable
–  Hybrid: Multicontext FPGAs, P+FPGA
–  Nanoscale: CNT, NW-based, NEMS
–  Avoid tedium (impatient)

•  Analyze Architectures
–  necessary to explore
–  costs different (esp. in new technologies)

•  Mapping as part of runtime?
–  Variation, wear, reliability

•  Requirements of Computation

3

Penn ESE535 Spring2011 -- DeHon 13

Problem

•  Map from a problem specification down
to an efficient implementation on a
particular computational substrate.

•  What is
– a specification
– a substrate
– have to do during mapping

Penn ESE535 Spring2011 -- DeHon 14

Problem: Specification

•  Recall: basic tenant of CS theory
– we can specify computations precisely
– Universal languages/building blocks exist

•  Turing machines
•  nand gates

•  EEs:
– Can build any function out of nand gates
– Any FSM out of gates + registers

Penn ESE535 Spring2011 -- DeHon 15

Specifications

•  netlist
•  logic gates
•  FSM
•  programming

language
–  C, C++, Lisp, Java,

block diagram
•  DSL (domain specific)

–  MATLAB, Snort

•  RTL
–  Register Transfer

Level
–  (e.g. subsets of

Verilog, VHDL)
•  behavioral
•  dataflow graph
•  layout
•  SPICE netlist

Penn ESE535 Spring2011 -- DeHon 16

Substrate
•  “full” custom VLSI
•  Standard cell
•  metal-only gate-array
•  FPGA
•  Processor (scalar, VLIW, Vector)
•  Array of Processors (SoC, {multi,many}core)
•  billiard balls
•  Nanowire PLA
•  molecules
•  DNA

Penn ESE535 Spring2011 -- DeHon 17

Full Custom

•  Get to define all
layers

•  Use any geometry
you like

•  Only rules are
process design rules

•  ESE570

Penn ESE535 Spring2011 -- DeHon 18

FPGA

K-LUT (typical k=4)
 Compute block
 w/ optional
 output Flip-Flop

ESE171, CIS371

4

Penn ESE535 Spring2011 -- DeHon 19

Standard Cell Area

inv nand3 AOI4 inv nor3 Inv

All cells
uniform
height

Width of
channel
determined
by routing

Cell area Width of channel
fairly constant?

Penn ESE535 Spring2011 -- DeHon 20

Nanowire PLA

Penn ESE535 Spring2011 -- DeHon 21

What are we throwing away?
(what does mapping have to

recover?)

•  layout
•  TR level circuits
•  logic gates / netlist
•  FSM
•  Allocation of

functional units and
assignment

•  Cycle-by-cycle
timing

•  Operation
sequencing

•  How task
implemented

DSL: MATLAB
Penn ESE535 Spring2011 -- DeHon 22

Specification not Optimal

•  Y = a*b*c + a*b*/c + /a*b*c

•  Multiple representations with the same
semantics (computational meaning)

•  Only have to implement the semantics,
not the “unimportant” detail

•  Exploit freedom to make
–  smaller/faster/cooler

Penn ESE535 Spring2011 -- DeHon 23

Problem Revisited

•  Map from some “higher” level down to
substrate

•  Fill in details:
– device sizing, placement, wiring, circuits,

gate or functional-unit mapping, timing,
encoding, data movement, scheduling,
resource sharing

Penn ESE535 Spring2011 -- DeHon 24

Decomposition

•  Conventionally, decompose into phases:
–  Arch. select, scheduling, assignment -> RTL
–  sequential opt. -> logic equations
–  logic opt., covering -> gates
–  retiming -> gates and registers
–  placement-> placed gates
–  routing->mapped design

•  Good abstraction, manage complexity

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

5

Penn ESE535 Spring2011 -- DeHon 25

Easy once decomposed?
•  All steps are (in general) NP-hard.

–  routing
–  placement
–  partitioning
–  covering
–  logic optimization
–  scheduling

•  What do we do about NP-hard problems?
–  Return to this problem in a few slides…

NP-hard:
 Can verify solution in polytime
 N, N2, N100

 Do not know how to find in polytime
 only known eN
 if there were a polytime solution
 then P=NP

Penn ESE535 Spring2011 -- DeHon 26

Decomposition

+ Easier to solve
– only worry about one problem at a time

+ Less computational work
– smaller problem size

-  Abstraction hides important objectives
– solving 2 problems optimally in sequence

often not give optimal result of
simultaneous solution

Penn ESE535 Spring2011 -- DeHon 27

Mapping and Decomposition

•  Two important things to get back to
– disentangling problems
– coping with NP-hardness

Penn ESE535 Spring2011 -- DeHon 28

Costs
•  Once get (preserve) semantics, trying to

minimize the cost of the implementation.
–  Otherwise this would be trivial
–  (none of the problems would be NP-hard)

•  What costs?
•  Typically: EDA [:-)]

–  Energy
–  Delay (worst-case, expected….)
–  Area

•  Future
–  Yield
–  Reliability
–  Operational Lifetime

Penn ESE535 Spring2011 -- DeHon 29

Costs

•  Different cost critera (e.g. E,D,A)
– behave differently under transformations
–  lead to tradeoffs among them

•  [LUT cover example next slide]

– even have different optimality/hardness
•  e.g. optimally solve delay covering in poly time,

but not area mapping
– E.g. covering

Penn ESE535 Spring2011 -- DeHon 30

Costs: Area vs. Delay

Example of exploiting freedom of mapping choice.

6

Penn ESE535 Spring2011 -- DeHon 31

Costs

•  Cannot, generally, solve a problem
independent of costs
– costs define what is “optimal”
– e.g.

•  (A+B)+C vs. A+(B+C)
•  [cost=pob. Gate output is high]
•  A,B,C independent
•  P(A)=P(B)=0.5, P(C)=0.01
•  P(A)=0.1, P(B)=P(C)=0.5

Penn ESE535 Spring2011 -- DeHon 32

Costs may also simplify
problem

•  Often one cost dominates
–  Allow/supports decomposition
–  Solve dominant problem/effect first (optimally)
–  Cost of other affects negligible

•  total solution can’t be far from optimal

–  e.g.
•  Delay in gates,
•  Delay in wires

–  Require: formulate problem around relative costs

•  Simplify problem at cost of generality

Penn ESE535 Spring2011 -- DeHon 33

Coping with NP-hard
Problems

How do we cope with?
•  simpler sub-problem based on dominant cost

or special problem structure
•  problems exhibit structure

–  optimal solutions found in reasonable time in
practice

•  approximation algorithms
–  Can get within some bound of optimum

•  heuristic solutions
•  high density of good/reasonable solutions?

–  Try many … filter for good ones
•  …makes it a highly experimental discipline

Penn ESE535 Spring2011 -- DeHon 34

Not a solved problem

Why need to study – not just buy tool from C or M?
•  NP-hard problems

–  almost always solved in suboptimal manner
–  or for particular special cases

•  decomposed in suboptimal ways
•  quality of solution changes as dominant costs

change
–  …and relative costs are changing!

•  new effects and mapping problems crop up with
new architectures, substrates

Penn ESE535 Spring2011 -- DeHon 35

Big Challenge

•  Rich, challenging, exciting space
•  Great value

– practical
–  theoretical

•  Worth vigorous study
–  fundamental/academic
– pragmatic/commercial

This Class: Student Outcomes

•  You will learn:
–  Freedom exists in design mappings and how to

exploit
–  Formulate & abstract optimization problems
–  How to decompose large problems
–  Techniques for attacking these problems
–  Traditional design objectives (e.g. E,D,A, map time.)
–  Canonical representations for problems
–  Evaluate the quality of a design mapping
–  Implement design automation algorithms

Penn ESE535 Spring2011 -- DeHon 36

7

Penn ESE535 Spring2011 -- DeHon 37

This Class: Technique Toolkit
•  Dynamic Programming
•  Linear Programming (LP, ILP)
•  Graph Algorithms
•  Greedy Algorithms
•  Randomization
•  Search
•  Heuristics
•  Approximation Algorithms
•  SAT

Penn ESE535 Spring2011 -- DeHon 38

This Class:
Decomposition

•  Provisioning
•  Scheduling
•  Logic Optimization
•  Covering/gate-mapping
•  Partitioning
•  Placement
•  Routing

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring2011 -- DeHon 39

Student Requirements

•  Reading
•  Class
•  Projects

– Will involve programming algorithms
– Roughly weekly
– Cumulative build toward an overall

mapping goal
– Choose what you do for final piece

•  Last month
Penn ESE535 Spring2011 -- DeHon 40

Graduate Class
•  Assume you are here to learn

– Motivated
– Mature
– Not just doing minimal to get by and get a

grade
•  Not plug-in-numbers and get solution
•  Things may be underspecified

– Reason
– Ask questions
– State assumptions

Penn ESE535 Spring2011 -- DeHon 41

Materials
•  Reading

– Online
•  several on blackboard
•  Rest on Xplore, ACM DL, web

– Linked from syllabus page
–  If online, linked to reading page on web;

I assume you will download/print/read.
– Possible reference texts (on web)

•  Lecture slides
–  I’ll try to link to web page by 10am

•  you can print
Penn ESE535 Spring2011 -- DeHon 42

Administrivia

•  Return Info sheets
•  Feedback – every lecture – return@end
•  Web page

– http://www.seas.upenn.edu/~ese535/
– Policies on web page

•  READ THIS (you are responsible for knowing)
– Syllabus linked off page (reading, assign)

•  Next Class Wed. 19th
– Monday is MLK holiday

8

Penn ESE535 Spring2011 -- DeHon 43

Questions?

Penn ESE535 Spring2011 -- DeHon 44

Today’s Big Ideas
•  Human time limiter
•  Leverage: raise abstraction+fill in details
•  Problems complex (human, machine)
•  Decomposition necessary evil (?)
•  Implement semantics

– Exploit freedom to xform to reduce costs
•  Dominating effects
•  Problem structure
•  Optimal solution depend on cost

(objective)

