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ESE535: 
Electronic Design Automation 

Day 1:  January 12, 2011 
Introduction 

Complete questionnaire  
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Warmup Poll 
•  How many of you have: 

–  Drawn geometry for transistors and wires 
–  Sized transistors 
–  Placed logic and/or memory cells 
–  Selected the individual gates 
–  Specified the bit encoding for an FSM 
–  Designed a bit-slice for an Adder or ALU 
–  Written RTL Verilog or VHDL 
–  Written Behavioral Verilog, VHDL, etc. and compiled 

to hardware? 
–  Compiled C to gates? 
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Modern Design Challenge 
•  How do we design modern 

computational systems? 
– billions of devices 
– used in everything 
– billion dollar businesses 
–  rapidly advancing technology 
– more “effects” to address 
–  rapidly developing applications and uses 
– short product cycles 
– extreme time-to-market pressures 

Productivity Gap 
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The Productivity Gap 

Source: Newton (UCB/GSRC) 
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Bottleneck 

•  Human brain power is the bottleneck 
–  to producing new designs 
–  to creating new things 

•   (applications of technology) 

–  to making money 
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Avoiding the Bottleneck 

•  How do we unburden the human? 
– Take details away from him/her  

•  raise the level of abstraction at which human 
specifies computation 

– Pick up the slack 
•  machine take over the details 
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To Design, Implement, Verify 
10M transistors 
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Central Questions 

•  How do we make the machine fill in the 
details (elaborate the design)? 

•  How well can it solve this problem? 
•  How fast can it solve this problem? 
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Outline 

•  Intro/Setup 
•  Instructor 
•  The Problem 
•  Decomposition 
•  Costs 
•  Not Solved 
•  This Class 
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Instructor 
•  VLSI/CAD user + Novel Tech. consumer 

–  Architect, Computer Designer 
–  Spatial designs: FPGAs, Reconfigurable 
–  Hybrid: Multicontext FPGAs, P+FPGA 
–  Nanoscale: CNT, NW-based, NEMS 
–  Avoid  tedium (impatient) 

•  Analyze Architectures 
–  necessary to explore 
–  costs different (esp. in new technologies) 

•  Mapping as part of runtime?  
–  Variation, wear, reliability 

•  Requirements of Computation 
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Problem 

•  Map from a problem specification down 
to an efficient implementation on a 
particular computational substrate. 

•  What is 
– a specification 
– a substrate 
– have to do during mapping 
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Problem: Specification 

•  Recall: basic tenant of CS theory  
– we can specify computations precisely 
– Universal languages/building blocks exist 

•  Turing machines 
•  nand gates 

•  EEs: 
– Can build any function out of nand gates 
– Any FSM out of gates + registers 
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Specifications 

•  netlist 
•  logic gates 
•  FSM 
•  programming 

language 
–  C, C++, Lisp, Java, 

block diagram 
•  DSL (domain specific) 

–  MATLAB, Snort 

•  RTL 
–  Register Transfer 

Level 
–  (e.g. subsets of 

Verilog, VHDL) 
•  behavioral 
•  dataflow graph 
•  layout 
•  SPICE netlist 
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Substrate 
•  “full” custom VLSI 
•  Standard cell 
•  metal-only gate-array 
•  FPGA 
•  Processor (scalar, VLIW, Vector) 
•  Array of Processors (SoC, {multi,many}core) 
•  billiard balls 
•  Nanowire PLA 
•  molecules 
•  DNA 
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Full Custom 

•  Get to define all 
layers 

•  Use any geometry 
you like 

•  Only rules are 
process design rules 

•  ESE570 
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FPGA 

K-LUT (typical k=4) 
  Compute block 
      w/ optional  
 output Flip-Flop 

ESE171, CIS371 
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Standard Cell Area 

inv nand3 AOI4 inv nor3 Inv 

All cells 
uniform 
height 

Width of 
channel 
determined 
by routing 

Cell area Width of channel 
fairly constant? 
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Nanowire PLA 
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What are we throwing away? 
(what does mapping have to 

recover?) 

•  layout 
•  TR level circuits 
•  logic gates / netlist 
•  FSM 
•  Allocation of 

functional units and 
assignment 

•  Cycle-by-cycle 
timing 

•  Operation 
sequencing 

•  How task 
implemented 

DSL: MATLAB 
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Specification not Optimal 

•  Y = a*b*c + a*b*/c + /a*b*c 

•  Multiple representations with the same 
semantics (computational meaning) 

•  Only have to implement the semantics, 
not the “unimportant” detail 

•  Exploit freedom to make  
–                                             smaller/faster/cooler 
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Problem Revisited 

•  Map from some “higher” level down to 
substrate 

•  Fill in details: 
– device sizing, placement, wiring, circuits, 

gate or functional-unit mapping, timing, 
encoding, data movement, scheduling, 
resource sharing 
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Decomposition 

•  Conventionally, decompose into phases: 
–  Arch. select, scheduling, assignment -> RTL 
–  sequential opt. -> logic equations 
–  logic opt., covering -> gates 
–  retiming -> gates and registers 
–  placement-> placed gates 
–  routing->mapped design  

•  Good abstraction, manage complexity 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Easy once decomposed? 
•  All steps are (in general) NP-hard. 

–  routing 
–  placement 
–  partitioning 
–  covering 
–  logic optimization 
–  scheduling 

•  What do we do about NP-hard problems? 
–  Return to this problem in a few slides… 

NP-hard: 
   Can verify solution in polytime 
        N, N2, N100 

   Do not know how to find in polytime 
             only known  eN   
    if there were a polytime solution 
          then P=NP 
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Decomposition 

+ Easier to solve  
– only worry about one problem at a time 

+ Less computational work 
– smaller problem size 

-  Abstraction hides important objectives 
– solving 2 problems optimally in sequence 

often not give optimal result of 
simultaneous solution 
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Mapping and Decomposition 

•  Two important things to get back to 
– disentangling problems 
– coping with NP-hardness 
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Costs 
•  Once get (preserve) semantics, trying to 

minimize the cost of the implementation. 
–  Otherwise this would be trivial  
–  (none of the problems would be NP-hard) 

•  What costs? 
•  Typically: EDA [:-)] 

–  Energy 
–  Delay  (worst-case, expected….) 
–  Area 

•  Future 
–  Yield 
–  Reliability  
–  Operational Lifetime 
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Costs 

•  Different cost critera (e.g. E,D,A)   
– behave differently under transformations 
–  lead to tradeoffs among them 

•  [LUT cover example next slide] 

– even have different optimality/hardness   
•  e.g. optimally solve delay covering in poly time, 

but not area mapping 
– E.g. covering 

Penn ESE535 Spring2011 -- DeHon 30 

Costs: Area vs. Delay 

Example of exploiting freedom of mapping choice. 
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Costs 

•  Cannot, generally, solve a problem 
independent of costs 
– costs define what is “optimal” 
– e.g. 

•  (A+B)+C  vs. A+(B+C) 
•   [cost=pob. Gate output is high] 
•  A,B,C independent 
•  P(A)=P(B)=0.5, P(C)=0.01 
•  P(A)=0.1, P(B)=P(C)=0.5 
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Costs  may also simplify 
problem 

•  Often one cost dominates 
–  Allow/supports decomposition 
–  Solve dominant problem/effect first (optimally) 
–  Cost of other affects negligible 

•  total solution can’t be far from optimal 

–  e.g. 
•  Delay in gates,  
•  Delay in wires 

–  Require: formulate problem around relative costs 

•  Simplify problem at cost of generality 
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Coping with NP-hard 
Problems 

How do we cope with? 
•  simpler sub-problem based on dominant cost 

or special problem structure 
•  problems exhibit structure 

–  optimal solutions found in reasonable time in 
practice 

•  approximation algorithms 
–  Can get within some bound of optimum 

•  heuristic solutions 
•  high density of good/reasonable solutions? 

–  Try many … filter for good ones 
•  …makes it a highly experimental discipline 
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Not a solved problem 

Why need to study – not just buy tool from C or M? 
•  NP-hard problems 

–  almost always solved in suboptimal manner 
–  or for particular special cases 

•  decomposed in suboptimal ways 
•  quality of solution changes as dominant costs 

change  
–  …and relative costs are changing! 

•  new effects and mapping problems crop up with 
new architectures, substrates 
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Big Challenge 

•  Rich, challenging, exciting space 
•  Great value 

– practical 
–  theoretical 

•  Worth vigorous study 
–  fundamental/academic 
– pragmatic/commercial 

This Class: Student Outcomes 

•  You will learn: 
–  Freedom exists in design mappings and how to 

exploit 
–  Formulate & abstract optimization problems  
–  How to decompose large problems 
–  Techniques for attacking these problems  
–  Traditional design objectives (e.g. E,D,A, map time.)  
–  Canonical representations for problems 
–  Evaluate the quality of a design mapping 
–  Implement design automation algorithms 
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This Class: Technique Toolkit 
•  Dynamic Programming 
•  Linear Programming (LP, ILP) 
•  Graph Algorithms 
•  Greedy Algorithms 
•  Randomization 
•  Search 
•  Heuristics 
•  Approximation Algorithms 
•  SAT 
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This Class:  
Decomposition 

•  Provisioning 
•  Scheduling 
•  Logic Optimization 
•  Covering/gate-mapping 
•  Partitioning 
•  Placement 
•  Routing 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Student Requirements 

•  Reading  
•  Class 
•  Projects 

– Will involve programming algorithms   
– Roughly weekly 
– Cumulative build toward an overall 

mapping goal 
– Choose what you do for final piece  

•  Last month 
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Graduate Class 
•  Assume you are here to learn 

– Motivated 
– Mature 
– Not just doing minimal to get by and get a 

grade 
•  Not plug-in-numbers and get solution 
•  Things may be underspecified 

– Reason 
– Ask questions 
– State assumptions 
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Materials 
•  Reading 

– Online 
•  several on blackboard 
•  Rest on Xplore, ACM DL, web 

– Linked from syllabus page 
–  If online, linked to reading page on web; 

I assume you will download/print/read. 
– Possible reference texts (on web) 

•  Lecture slides  
–  I’ll try to link to web page by 10am  

•  you can print 
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Administrivia 

•  Return Info sheets 
•  Feedback – every lecture – return@end 
•  Web page 

– http://www.seas.upenn.edu/~ese535/ 
– Policies on web page 

•  READ THIS (you are responsible for knowing) 
– Syllabus linked off page (reading, assign) 

•  Next Class Wed. 19th  
– Monday is MLK holiday 
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Questions? 
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Today’s Big Ideas 
•  Human time limiter 
•  Leverage: raise abstraction+fill in details 
•  Problems complex (human, machine) 
•  Decomposition necessary evil (?) 
•  Implement semantics 

– Exploit freedom to xform to reduce costs 
•  Dominating effects 
•  Problem structure 
•  Optimal solution depend on cost 

(objective) 


