ESE535:
 Electronic Design Automation
 Day 25: April 20, 2011
 Dual Objective
 Dynamic Programming
 Penn ESE535 Spring 2011 -- DeHon

Covering Review

- Use dynamic programming to optimally cover trees
- problem decomposable into subproblems
- optimal solution to each are part of optimal
- no interaction between subproblems
- small number of distinct subproblems
- single optimal solution to subproblem
- Break DAG into trees then cover optimally

Penn ESE535 Spring 2011 -- DeHon

Placement

- How do we integrate placement into this covering process?

Covering Basics

Basic Idea:

- Assume have optimal solution to all subproblems smaller than current problem
- Try all ways of implementing current root
- each candidate solution is new gate + previously solve subtrees
- Pick best
- (smallest area, least delay, least power)

GaMa - Linear Placement

- Problem: cover and place datapaths in rows of FPGA-like cells to minimize area, delay
- Datapath width extends along one dimension (rows)
- Composition is 1D along other dimension (columns)
- Always covering row at a time

Basic Strategy

- Restrict each subtree to a contiguous set of rows
- Build up placement for subtree during cover
- When consider cover, also consider all sets of arrangements of subtrees
- effectively expands library set

GaMa Properties

- Operates in time linear in graph size
- O(|rule set|×|graph nodes|)
- Finds area-optimum for restricted problem
- trees with contiguous subtrees
- As is, may not find delay optimum

Simultaneous Placement Benefits

- Know real delay (including routing) during covering
- make sure critical logic uses fastest inputs
- ...shortest paths
- Know adjacency
- can use special resources requiring adjacent blocks
- Carry chains, direct connections

GaMa Example

- $\mathrm{Y}=\mathrm{A} \times \mathrm{B}+(\operatorname{abs}(\mathrm{C})+\mathrm{ilog} 2(\mathrm{D}))$

Distance	Delay
$0-3$ rows	0
$4-7$ rows	1
$8+$ rows	2

add	$A=1, D=1$
multiply	$A=8, T=4$
abs	$A=3, T=2$
ilog2	$A=4, T=4$

Penn ESE535 Spring 2011 -- DeHon

How Change?

add	$A=1, D=1$	
multiply	$A=8, T=4$	$A=6, T=6$
abs	$\hat{A}=2, T=2$	$A=2, T=3$
ilog2	$A=4, T=4$	$A=3, T=5$

Penn ESE535 Spring 2011 -- DeHon 12

GaMa Results

- Comparable result quality (area, time) to running through Xilinx tools
- Placement done in seconds as opposed to minutes to hours for Xilinx
- simulated annealing, etc.
- not exploiting datapath regularity

Simultaneous Mapping and Linear Placement of Trees

- Problem: cover and place standard cell row minimizing area
- Area: cell width and cut width
- Technique: combine DP-covering with DP-tree layout

GaMa Delay Problem

- Area can affect delay
- Doesn't know when to pick worse delay to reduce area
- make non-critical path subtree slower/ smaller
- so overall critical path will be close later
- Only tracking single objective
- Fixable as next technique demonstrates

GaMa Questions?

Penn ESE535 Spring 2011 -- DeHon

Composition Challenge

- Minimum area solution to subproblems does not necessarily lead to minimum

Strategy

- Recognize that these are incomparable objectives
- neither is strictly superior to other
- keep all solutions
- discard only inferior (dominated) solutions

Penn ESE535 Spring 2011 - DeHon	21

Non-Inferior Curve

- Set of dominators defines a curve

This is a recurring theme---often prune work using dominator curve
Penn ESE535 Spring 2011 -- DeHon

Minimize Area

- Two components of area:
- gate-area
- cut-width
- Unclear during mapping when need
- a smaller gate-area
- vs. a smaller cut-width
- at the expense of (local) cell area
- (same problem as area vs. delay in GaMa)

Dominating/Inferior Solutions

- A solution is dominated if there is another solution strictly superior in all objectives
$-A=3, T=2 \quad A=2, T=3$
- neither dominates
$-A=3, T=3 \quad A=3, T=2 \quad A=2, T=3$
- $A=3, T=3$ is inferior, being dominated by either of the other two solutions

Penn ESE535 Spring 2011 - DeHon

Strategy

- Keep curve of non-inferior area-cut points
- During DP
- build a new curve for each subtree
- by looking at solution set intersections
- cross product set of solutions from each subtrees feeding into this subtree

Consequences

- More work per graph point
- keeping and intersecting many points
- Theory: points ${ }^{(f a n i n)} \times$ gates
- Points \leq range of solutions in smallest dimension
- e.g. points \leq number of different cut-widths

Time Notes

- Computing Optimal Tree layout:
$\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- Per node: O(cutwidth ${ }^{(\text {fanin) }}$ * $\mathrm{N}^{*} \log (\mathrm{~N})$)
- Loose bound
- possible to tighten?
- less points and smaller " N " in tree for earlier subproblems
- higher fanin \rightarrow less depth \rightarrow more use of small "N" for linear layout problems

Area: Questions

Algorithm: Tree Cover+Place

- For each tree node from leafs
- For each gate cover
- For each non-inferior point in fanin-subtrees - compute optimal tree layout
- keep non-inferior points (cutwidth, gatearea)
- Optimal Tree Layout
- Yannakakis/JACM v32n4p950, Oct. 1985

Empirical Results

- Claim: 20% area improvement

Covering for Area and Delay (no placement)

- Previously saw was hard to do DP to
- simultaneously optimize for area and delay
- properly generate area-time tradeoffs
- Problem:
- whether or not needed a fast path
- not clear until saw speed of siblings

Strategy

- Use same technique as just detailed for - gate-area + cutwidth
- I.e. -- at each tree cover
- keep all non-inferior points
- (effectively the full area-time curve)
- as cover, intersect area-time curves to generate new area-time curve
- When get to a node
- can pick smallest implementation for a child node that does not increase critical path

GaMa -- Optimal Delay

- Use this technique in GaMa
- solve delay problem
- get good area-delay tradeoffs
- GARP has a discrete timing model
- so already have small spread
- for conventional FPGA
- will have to discretize

Example

Penn ESE535 Spring 2011 -- DeHon

Points to Keep

- Usually small variance in times
- if use discrete model like LUT delays, only a small number of different times
- if use continuous model, can get close to optimum by discretizing and keeping a fixed set
- Similarly, small total variance in area - e.g. factor of 2-3
- discretizing, gets close w/out giving up much
- Discretized: run in time linear in N
- assuming bounded fanin gates

	NOrk	Ma Ex	mple	
- $\mathrm{Y}=$	+ (abs	ilog2(D))	Distance	Delay
			0-3 rows	0
			4-7 rows	1
			8+ rows	2
add	$\mathrm{A}=1, \mathrm{D}=1$			
multiply	$\mathrm{A}=8, \mathrm{~T}=4$	$\mathrm{A}=6, \mathrm{~T}=6$		
abs	$\mathrm{A}=3, \mathrm{~T}=2$	$\mathrm{A}=2, \mathrm{~T}=3$		
ilog2	$\mathrm{A}=4, \mathrm{~T}=4$	A $=3, T=5$		
Penn ESE535 Spring 2011 - DeHon				34

Area \& Delay: Questions?

Penn ESE535 Spring 2011 -- DeHon

Covering and Linear Placement for Area and Delay

- Have both
- cut-width + gate-area affects
- delay tradeoff
- Result
- have three objectives to minimize
- cut-width
- gate-area
- gate-delay
[Lou+Salek+Pedram/ICCAD'97]

Note

- Delay calculation:
- assumes delay in gates and fanout
- fanout effect makes heuristic
- maybe iterate/relax?
- ignores distance
- "Optimal" tree layout algorithm being used
- is optimal with respect to cut-width
- not optimal with respect to critical path wire length

Placement Area-Delay Questions?

Strategy

- Repeat trick:
- keep non-inferior points in three-space - <cut-width,gate-area,delay>
- Intersect spaces to compute new cover spaces
- May really need to discretize points to limit work

Empirical Results

- Mapping for delay:
- 20\% delay improvement
- achieving effectively same area
- (of alternative, not of self targeting area)

Two Dimensions?

- Both so far, one-dimensional
- One-dimensional
- nice layout restrictions
- simple metric for delay
- simple metric for area
- How extend to two dimensions?

2D Cover and Place

- Problem: cover and place in 2D to minimize area (delay)
- Area: gate area + "wirelength" area
- Delay: gate delay + estimated wire delay

Strategy

- Relax placement during covering
- Initially place unmapped using constructive placement (Day 9)
- Cover via dynamic programming
- When cover a node,
- fanins already visited
- calculate new placement
- Center of Mass
- Periodically re-calculate placement
- Use estimated/refined placements to get area, delay

Empirical Results

- $\ln 1 \mu \mathrm{~m}$
-5% area reduction
-8% delay reduction
- Not that inspiring
- ...but this was in the micron era
- probably have a bigger effect today

Incremental Placement

- Place newly covered nodes so as to minimize wire lengths (critical path

2D Place and Cover Questions?

Summary
- Can consider placement effects while
covering
- Many problems can't find optimum by
minimizing single objective
- delay (area effects)
- area (cutwidth effects)
- Can adapt DP to solve
- keep all non-inferior points
- can keep polynomial time
• if very careful, primarily increase constants
Penn EsE5535 sping 2011- - Deton

Admin

- Reading on web
- Projects due Monday
- Course evaluations online

Big Ideas:

- Simultaneous optimization
- Multi-dimensional objectives
- dominating points (inferior points) - use with dynamic programming
- Exploit stylized problems can solve optimally
- Phase Ordering: estimate/iterate

