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ESE535: 
Electronic Design Automation 

Day 11:  February 2, 2011 
Partitioning 

(Intro, KLFM) 
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Today 

•  Partitioning 
– why important 

•  Can be used as tool  
at many levels 

– practical attack 
– variations and issues 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Motivation (1) 

•  Divide-and-conquer 
–  trivial case: decomposition 
– smaller problems easier to solve  

•  net win, if super linear 
•  Part(n) + 2×T(n/2) < T(n) 

– problems with sparse connections  or 
interactions 

– Exploit structure 
•  limited cutsize is a common structural property 
•  random graphs would not have as small cuts  
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Motivation (2) 
•  Cut size (bandwidth) can determine  

– Area, energy 
•  Minimizing cuts 

– minimize interconnect requirements 
–  increases signal locality 

•  Chip (board) partitioning 
– minimize IO 

•  Direct basis for placement 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Bisection Width 
•  Partition design into two equal size halves 

– Minimize wires (nets) with ends in both halves 
•  Number of wires crossing is bisection 

width 
•  lower bw = more locality 

N/2 

N/2 

cutsize 
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Interconnect Area 

•  Bisection width is 
lower-bound on IC 
width 
–  When wire 

dominated, may be 
tight bound 

•  (recursively) 
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Classic Partitioning Problem 

•  Given: netlist of interconnect cells 
•  Partition into two (roughly) equal halves 

(A,B) 
•  minimize the number of nets shared by 

halves 
•  “Roughly Equal” 

– balance condition:  (0.5-δ)N≤|A|≤(0.5+δ)N 
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Balanced Partitioning 

•  NP-complete for general graphs 
–  [ND17: Minimum Cut into Bounded Sets, 

Garey and Johnson] 
– Reduce SIMPLE MAX CUT 
– Reduce MAXIMUM 2-SAT to SMC 
– Unbalanced partitioning poly time 

•  Many heuristics/attacks 
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KL FM Partitioning Heuristic 

•  Greedy, iterative 
– pick cell that decreases cut and move it 
–  repeat 

•  small amount of non-greediness: 
–  look past moves that make locally worse 
–  randomization 
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Fiduccia-Mattheyses 
(Kernighan-Lin refinement) 

•  Start with two halves (random split?) 
•  Repeat until no updates 

– Start with all cells free 
– Repeat until no cells free 

•  Move cell with largest gain (balance allows) 
•  Update costs of neighbors 
•  Lock cell in place (record current cost) 

– Pick least cost point in previous sequence and 
use as next starting position 

•  Repeat for different random starting points 
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Efficiency 

Tricks to make efficient: 
•  Expend little work picking move candidate   

–  Constant work ≡ O(1) 
–  Means amount of work not dependent on problem 

size 
•  Update costs on move cheaply [O(1)] 
•  Efficient data structure  

–  update costs cheap 
–  cheap to find next move 
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Ordering and Cheap Update 

•  Keep track of Net gain on node == delta 
net crossings to move a node 
  cut cost after move = cost - gain 

•  Calculate node gain as Σ net gains for 
all nets at that node 
– Each node involved in several nets 

•  Sort nodes by gain 
– Avoid full resort every move 

B 

A C 
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FM Cell Gains 

-4 

+4 

2 

0 

1 

0 

Gain = Delta in number of nets crossing between partitions 
         = Sum of net deltas for nets on the node 
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After move node? 

•  Update cost 
– Newcost=cost-gain 

•  Also need to update gains   
– on all nets attached to moved node 
– but moves are nodes, so push to 

• all nodes affected by those nets 
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Composability of Net Gains 

-1 

-1 +1 0 

-1 

-1+1-0-1 = -1 
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FM Recompute Cell Gain 
•  For each net, keep track of number of cells in 

each partition [F(net), T(net)] 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
•  (think -1 => 0) 
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FM Recompute Cell Gain 
•  For each net, keep track of number of cells in 

each partition [F(net), T(net)] 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
•  (think -1 => 0) 

–  if T(net)==1, decrement gain on T side of net 
•  (think 1=>0) 
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FM Recompute Cell Gain 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
–  if T(net)==1, decrement gain on T side of net 
–  decrement F(net), increment T(net) 
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FM Recompute Cell Gain 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
–  if T(net)==1, decrement gain on T side of net 
–  decrement F(net), increment T(net) 
–  if F(net)==1, increment gain on F cell 
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FM Recompute Cell Gain 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
–  if T(net)==1, decrement gain on T side of net 
–  decrement F(net), increment T(net) 
–  if F(net)==1, increment gain on F cell 
–  if F(net)==0, decrement gain on all cells (T) 
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FM Recompute Cell Gain 
•  For each net, keep track of number of cells in 

each partition [F(net), T(net)] 
•  Move update:(for each net on moved cell) 

–  if T(net)==0, increment gain on F side of net 
•  (think -1 => 0) 

–  if T(net)==1, decrement gain on T side of net 
•  (think 1=>0) 

–  decrement F(net), increment T(net) 
–  if F(net)==1, increment gain on F cell 
–  if F(net)==0, decrement gain on all cells (T) 
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FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 
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FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 

+1 +1 +1 +1 

Penn ESE535 Spring 2011 -- DeHon 
24 

FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 

+1 +1 +1 +1 

-1 0 0 0 
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FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 

+1 +1 +1 +1 

-1 0 0 0 

0 0 0 0 
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FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 

+1 +1 +1 +1 

-1 0 0 0 

0 0 0 0 

+1 0 0 0 
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FM Recompute (example) 

[note markings here 
   are deltas…earlier 
   pix were absolutes] 

+1 +1 +1 +1 

-1 0 0 0 

0 0 0 0 

+1 0 0 0 

-1 -1 -1 -1 
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FM Data Structures 
•  Partition Counts A,B 
•  Two gain arrays  

–  One per partition 
–  Key: constant time 

cell update 

•  Cells 
–  successors 

(consumers) 
–  inputs 
–  locked status 

Binned by cost  constant time update 
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FM Optimization Sequence 
(ex) 
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FM Running Time? 
•  Randomly partition into two halves 
•  Repeat until no updates 

– Start with all cells free 
– Repeat until no cells free 

•  Move cell with largest gain 
•  Update costs of neighbors 
•  Lock cell in place (record current cost) 

– Pick least cost point in previous sequence and 
use as next starting position 

•  Repeat for different random starting points 
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FM Running Time 
•  Claim: small number of passes to converge 

–  Constant passes? 
•  Small (constant?) number of random starts 
•  N cell updates each round (swap) 
•  Updates K + fanout work (avg. fanout K) 

–  assume at most K inputs to each node 
–  For every net attached (K+1) 

•  For every node attached to those nets (O(K)) 
•  Maintain ordered list O(1) per move 

–  every io move up/down by 1 
•  Running time: O(K2N) 

–  Algorithm significant for its speed  
•  (more than quality) 
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FM Starts? 

21K random starts, 3K network -- Alpert/Kahng 

So, FM gives 
a not bad 
solution 
quickly 
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Weaknesses? 
•  Local, incremental moves only 

– hard to move clusters 
– no lookahead 
– Stuck in local minima? 

•  Looks only at local structure 
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Improving FM 

•  Clustering 
•  Initial partitions 
•  Runs 
•  Partition size freedom 
•  Replication 

Following comparisons from Hauck and Boriello ‘96 
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Clustering 

•  Group together several leaf cells into 
cluster 

•  Run partition on clusters 
•  Uncluster (keep partitions) 

–  iteratively 
•  Run partition again 

– using prior result as starting point 
•  instead of random start 
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Clustering Benefits 
•  Catch local connectivity which FM might 

miss 
– moving one element at a time, hard to see 

move whole connected groups across 
partition 

•  Faster (smaller N) 
– METIS -- fastest research partitioner 

exploits heavily 
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How Cluster? 
•  Random 

– cheap, some benefits for speed 
•  Greedy “connectivity” 

– examine in random order 
– cluster to most highly connected 
– 30% better cut, 16% faster than random 

•  Spectral (next week) 
–  look for clusters in placement 
–  (ratio-cut like) 

•  Brute-force connectivity (can be O(N2)) 
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Initial Partitions? 
•  Random 
•  Pick Random node for one side 

– start imbalanced 
–  run FM from there 

•  Pick random node and Breadth-first 
search to fill one half 

•  Pick random node and Depth-first 
search to fill half 

•  Start with Spectral partition 
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Initial Partitions 

•  If run several times 
– pure random tends to win out 

– more freedom / variety of starts 
– more variation from run to run 
– others trapped in local minima 
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Number of Runs 
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Number of Runs 

•  2 - 10% 
•  10 - 18% 
•  20 <20% 
•  50 < 22% 
•  …but? 

21K random starts, 3K network  
Alpert/Kahng Penn ESE535 Spring 2011 -- DeHon 
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Unbalanced Cuts 

•  Increasing slack in partitions 
– may allow lower cut size 
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Unbalanced Partitions 

Following comparisons from Hauck and Boriello ‘96 

Small/large is benchmark size not small/large partition IO. 
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Replication 

•  Trade some additional logic area for 
smaller cut size  
– Net win if wire dominated 

Replication data from: Enos, Hauck, Sarrafzadeh ‘97 
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Replication 

•  5%  38% cut size reduction 
•  50%  50+% cut size reduction 
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What Bisection doesn’t tell us 

•  Bisection bandwidth purely geometrical 
•  No constraint for delay 

–  I.e. a partition may leave critical path 
weaving between halves 
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Critical Path and Bisection 

Minimum cut may cross critical path multiple times. 
Minimizing long wires in critical path => increase cut size. 
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So... 

•  Minimizing bisection 
– good for area 
– oblivious to delay/critical path 
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Partitioning Summary 

•  Decompose problem 
•  Find locality 
•  NP-complete problem 
•  linear heuristic (KLFM) 
•  many ways to tweak 

–  Hauck/Boriello, Karypis 
•  even better with replication 
•  only address cut size, not critical path delay 
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Admin 

•  Reading for Wed. online 
•  Assignment 2A due on Monday 
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Today’s Big Ideas: 
•  Divide-and-Conquer 
•  Exploit Structure 

– Look for sparsity/locality of interaction 
•  Techniques: 

– greedy 
–  incremental improvement 
–  randomness avoid bad cases, local minima 
–  incremental cost updates (time cost) 
– efficient data structures 


