
1

Penn ESE535 Spring 2011 -- DeHon
1

ESE535:
Electronic Design Automation

Day 11: February 2, 2011
Partitioning

(Intro, KLFM)

Penn ESE535 Spring 2011 -- DeHon
2

Today

•  Partitioning
– why important

•  Can be used as tool
at many levels

– practical attack
– variations and issues

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2011 -- DeHon
3

Motivation (1)

•  Divide-and-conquer
–  trivial case: decomposition
– smaller problems easier to solve

•  net win, if super linear
•  Part(n) + 2×T(n/2) < T(n)

– problems with sparse connections or
interactions

– Exploit structure
•  limited cutsize is a common structural property
•  random graphs would not have as small cuts

Penn ESE535 Spring 2011 -- DeHon
4

Motivation (2)
•  Cut size (bandwidth) can determine

– Area, energy
•  Minimizing cuts

– minimize interconnect requirements
–  increases signal locality

•  Chip (board) partitioning
– minimize IO

•  Direct basis for placement

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2011 -- DeHon
5

Bisection Width
•  Partition design into two equal size halves

– Minimize wires (nets) with ends in both halves
•  Number of wires crossing is bisection

width
•  lower bw = more locality

N/2

N/2

cutsize

Penn ESE535 Spring 2011 -- DeHon
6

Interconnect Area

•  Bisection width is
lower-bound on IC
width
–  When wire

dominated, may be
tight bound

•  (recursively)

2

Penn ESE535 Spring 2011 -- DeHon
7

Classic Partitioning Problem

•  Given: netlist of interconnect cells
•  Partition into two (roughly) equal halves

(A,B)
•  minimize the number of nets shared by

halves
•  “Roughly Equal”

– balance condition: (0.5-δ)N≤|A|≤(0.5+δ)N

Penn ESE535 Spring 2011 -- DeHon
8

Balanced Partitioning

•  NP-complete for general graphs
–  [ND17: Minimum Cut into Bounded Sets,

Garey and Johnson]
– Reduce SIMPLE MAX CUT
– Reduce MAXIMUM 2-SAT to SMC
– Unbalanced partitioning poly time

•  Many heuristics/attacks

Penn ESE535 Spring 2011 -- DeHon
9

KL FM Partitioning Heuristic

•  Greedy, iterative
– pick cell that decreases cut and move it
–  repeat

•  small amount of non-greediness:
–  look past moves that make locally worse
–  randomization

Penn ESE535 Spring 2011 -- DeHon
10

Fiduccia-Mattheyses
(Kernighan-Lin refinement)

•  Start with two halves (random split?)
•  Repeat until no updates

– Start with all cells free
– Repeat until no cells free

•  Move cell with largest gain (balance allows)
•  Update costs of neighbors
•  Lock cell in place (record current cost)

– Pick least cost point in previous sequence and
use as next starting position

•  Repeat for different random starting points

Penn ESE535 Spring 2011 -- DeHon
11

Efficiency

Tricks to make efficient:
•  Expend little work picking move candidate

–  Constant work ≡ O(1)
–  Means amount of work not dependent on problem

size
•  Update costs on move cheaply [O(1)]
•  Efficient data structure

–  update costs cheap
–  cheap to find next move

Penn ESE535 Spring 2011 -- DeHon
12

Ordering and Cheap Update

•  Keep track of Net gain on node == delta
net crossings to move a node
  cut cost after move = cost - gain

•  Calculate node gain as Σ net gains for
all nets at that node
– Each node involved in several nets

•  Sort nodes by gain
– Avoid full resort every move

B

A C

3

Penn ESE535 Spring 2011 -- DeHon
13

FM Cell Gains

-4

+4

2

0

1

0

Gain = Delta in number of nets crossing between partitions
 = Sum of net deltas for nets on the node

Penn ESE535 Spring 2011 -- DeHon
14

After move node?

•  Update cost
– Newcost=cost-gain

•  Also need to update gains
– on all nets attached to moved node
– but moves are nodes, so push to

• all nodes affected by those nets

Penn ESE535 Spring 2011 -- DeHon
15

Composability of Net Gains

-1

-1 +1 0

-1

-1+1-0-1 = -1

Penn ESE535 Spring 2011 -- DeHon
16

FM Recompute Cell Gain
•  For each net, keep track of number of cells in

each partition [F(net), T(net)]
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
•  (think -1 => 0)

Penn ESE535 Spring 2011 -- DeHon
17

FM Recompute Cell Gain
•  For each net, keep track of number of cells in

each partition [F(net), T(net)]
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
•  (think -1 => 0)

–  if T(net)==1, decrement gain on T side of net
•  (think 1=>0)

Penn ESE535 Spring 2011 -- DeHon
18

FM Recompute Cell Gain
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
–  if T(net)==1, decrement gain on T side of net
–  decrement F(net), increment T(net)

4

Penn ESE535 Spring 2011 -- DeHon
19

FM Recompute Cell Gain
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
–  if T(net)==1, decrement gain on T side of net
–  decrement F(net), increment T(net)
–  if F(net)==1, increment gain on F cell

Penn ESE535 Spring 2011 -- DeHon
20

FM Recompute Cell Gain
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
–  if T(net)==1, decrement gain on T side of net
–  decrement F(net), increment T(net)
–  if F(net)==1, increment gain on F cell
–  if F(net)==0, decrement gain on all cells (T)

Penn ESE535 Spring 2011 -- DeHon
21

FM Recompute Cell Gain
•  For each net, keep track of number of cells in

each partition [F(net), T(net)]
•  Move update:(for each net on moved cell)

–  if T(net)==0, increment gain on F side of net
•  (think -1 => 0)

–  if T(net)==1, decrement gain on T side of net
•  (think 1=>0)

–  decrement F(net), increment T(net)
–  if F(net)==1, increment gain on F cell
–  if F(net)==0, decrement gain on all cells (T)

Penn ESE535 Spring 2011 -- DeHon
22

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

Penn ESE535 Spring 2011 -- DeHon
23

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

+1 +1 +1 +1

Penn ESE535 Spring 2011 -- DeHon
24

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

+1 +1 +1 +1

-1 0 0 0

5

Penn ESE535 Spring 2011 -- DeHon
25

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

+1 +1 +1 +1

-1 0 0 0

0 0 0 0

Penn ESE535 Spring 2011 -- DeHon
26

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

+1 +1 +1 +1

-1 0 0 0

0 0 0 0

+1 0 0 0

Penn ESE535 Spring 2011 -- DeHon
27

FM Recompute (example)

[note markings here
 are deltas…earlier
 pix were absolutes]

+1 +1 +1 +1

-1 0 0 0

0 0 0 0

+1 0 0 0

-1 -1 -1 -1

Penn ESE535 Spring 2011 -- DeHon
28

FM Data Structures
•  Partition Counts A,B
•  Two gain arrays

–  One per partition
–  Key: constant time

cell update

•  Cells
–  successors

(consumers)
–  inputs
–  locked status

Binned by cost constant time update

Penn ESE535 Spring 2011 -- DeHon
29

FM Optimization Sequence
(ex)

Penn ESE535 Spring 2011 -- DeHon
30

FM Running Time?
•  Randomly partition into two halves
•  Repeat until no updates

– Start with all cells free
– Repeat until no cells free

•  Move cell with largest gain
•  Update costs of neighbors
•  Lock cell in place (record current cost)

– Pick least cost point in previous sequence and
use as next starting position

•  Repeat for different random starting points

6

Penn ESE535 Spring 2011 -- DeHon
31

FM Running Time
•  Claim: small number of passes to converge

–  Constant passes?
•  Small (constant?) number of random starts
•  N cell updates each round (swap)
•  Updates K + fanout work (avg. fanout K)

–  assume at most K inputs to each node
–  For every net attached (K+1)

•  For every node attached to those nets (O(K))
•  Maintain ordered list O(1) per move

–  every io move up/down by 1
•  Running time: O(K2N)

–  Algorithm significant for its speed
•  (more than quality)

Penn ESE535 Spring 2011 -- DeHon
32

FM Starts?

21K random starts, 3K network -- Alpert/Kahng

So, FM gives
a not bad
solution
quickly

Penn ESE535 Spring 2011 -- DeHon
33

Weaknesses?
•  Local, incremental moves only

– hard to move clusters
– no lookahead
– Stuck in local minima?

•  Looks only at local structure

Penn ESE535 Spring 2011 -- DeHon
34

Improving FM

•  Clustering
•  Initial partitions
•  Runs
•  Partition size freedom
•  Replication

Following comparisons from Hauck and Boriello ‘96

Penn ESE535 Spring 2011 -- DeHon
35

Clustering

•  Group together several leaf cells into
cluster

•  Run partition on clusters
•  Uncluster (keep partitions)

–  iteratively
•  Run partition again

– using prior result as starting point
•  instead of random start

Penn ESE535 Spring 2011 -- DeHon
36

Clustering Benefits
•  Catch local connectivity which FM might

miss
– moving one element at a time, hard to see

move whole connected groups across
partition

•  Faster (smaller N)
– METIS -- fastest research partitioner

exploits heavily

7

Penn ESE535 Spring 2011 -- DeHon
37

How Cluster?
•  Random

– cheap, some benefits for speed
•  Greedy “connectivity”

– examine in random order
– cluster to most highly connected
– 30% better cut, 16% faster than random

•  Spectral (next week)
–  look for clusters in placement
–  (ratio-cut like)

•  Brute-force connectivity (can be O(N2))
Penn ESE535 Spring 2011 -- DeHon

38

Initial Partitions?
•  Random
•  Pick Random node for one side

– start imbalanced
–  run FM from there

•  Pick random node and Breadth-first
search to fill one half

•  Pick random node and Depth-first
search to fill half

•  Start with Spectral partition

Penn ESE535 Spring 2011 -- DeHon
39

Initial Partitions

•  If run several times
– pure random tends to win out

– more freedom / variety of starts
– more variation from run to run
– others trapped in local minima

Penn ESE535 Spring 2011 -- DeHon
40

Number of Runs

Penn ESE535 Spring 2011 -- DeHon
41

Number of Runs

•  2 - 10%
•  10 - 18%
•  20 <20%
•  50 < 22%
•  …but?

21K random starts, 3K network
Alpert/Kahng Penn ESE535 Spring 2011 -- DeHon

42

Unbalanced Cuts

•  Increasing slack in partitions
– may allow lower cut size

8

Penn ESE535 Spring 2011 -- DeHon
43

Unbalanced Partitions

Following comparisons from Hauck and Boriello ‘96

Small/large is benchmark size not small/large partition IO.

Penn ESE535 Spring 2011 -- DeHon
44

Replication

•  Trade some additional logic area for
smaller cut size
– Net win if wire dominated

Replication data from: Enos, Hauck, Sarrafzadeh ‘97

Penn ESE535 Spring 2011 -- DeHon
45

Replication

•  5% 38% cut size reduction
•  50% 50+% cut size reduction

Penn ESE535 Spring 2011 -- DeHon
46

What Bisection doesn’t tell us

•  Bisection bandwidth purely geometrical
•  No constraint for delay

–  I.e. a partition may leave critical path
weaving between halves

Penn ESE535 Spring 2011 -- DeHon
47

Critical Path and Bisection

Minimum cut may cross critical path multiple times.
Minimizing long wires in critical path => increase cut size.

Penn ESE535 Spring 2011 -- DeHon
48

So...

•  Minimizing bisection
– good for area
– oblivious to delay/critical path

9

Penn ESE535 Spring 2011 -- DeHon
49

Partitioning Summary

•  Decompose problem
•  Find locality
•  NP-complete problem
•  linear heuristic (KLFM)
•  many ways to tweak

–  Hauck/Boriello, Karypis
•  even better with replication
•  only address cut size, not critical path delay

Penn ESE535 Spring 2011 -- DeHon
50

Admin

•  Reading for Wed. online
•  Assignment 2A due on Monday

Penn ESE535 Spring 2011 -- DeHon
51

Today’s Big Ideas:
•  Divide-and-Conquer
•  Exploit Structure

– Look for sparsity/locality of interaction
•  Techniques:

– greedy
–  incremental improvement
–  randomness avoid bad cases, local minima
–  incremental cost updates (time cost)
– efficient data structures

