
ESE535 Spring 2013

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2013 Assignment #2 Monday, January 28

Due: Part A: Monday, February 4, beginning of class.
Due: Part B: Monday, February 11, beginning of class.

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration You may discuss algorithmic and testing approaches away from computers
before February 4th. You may give tutorial assistance on using OS, compiler, and debugging
tools. All code development should be done independently. You may not share code or show
each other code solutions. All writeups must be the work of the individual.

Writeup Turn-in assignments on blackboard. See details on course web page. No hand-
writing or hand-drawn figures. See details below on what you need to turn in and the
format.

Project Overview We will be developing the tools to match, cover, and place a circuit
netlist onto a partially defective FPGA. Specifically, we will be dealing with a class of
partial failures of the Look-Up Tables (LUTs) used to implement programmable gates. The
assignments decompose the problem into pieces to roughly match our coverage of material in
the course. Each successive assignment will progress toward the final problem. This extends
work on mapping to high variation FPGAs we published in [1]; however, in the FPGA2012
paper we only addressed interconnect. This specifically expands work Nikil Mehta started
in his PhD thesis [2]. Section 3.1.7 sets up the opportunity and Section 5.4 describes his
preliminary work. Nikil has identified an interesting problem, and I believe there is an
opportunity to do better with a more comprehensive solution, which we will try to develop
during this course.

Model We model each physical 4-LUT as a tree of 15 2:1 multiplexers (See Figure 1). As
Nikil has established, the common failure mode under variation is not that the multiplexer
does the completely wrong thing, but that it cannot dynamically drive its output to different
values. If it happens that the multiplexer only needs to ever drive a 0 or a 1, such as when
both of its data inputs are always 0 or always 1, then it will still work. However, if it needs
to dynamically drive either a 0 or a 1, such as when its data inputs are 1 and 0 or 0 and 1, a
failed mux will not be able to do that. Consequently, we classify each multiplexer as either
fully functional (can pass anything) or constant-output functional (can only always drive
0 or always drive 1). Our goal in mapping is to assign the logic functions to the physical
LUTs so that the constant-output multiplexers never see differing inputs.

Opportunity The first opportunity we have is to select the physical 4-LUT to which a
logical function is mapped. An FPGA will have hundreds (millions) of 4-LUTs and the

1



ESE535 Spring 2013

input 1

input 2

input 3

1 2 3 4 65 7 8

9 10 11 12

13 14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

input 0

Figure 1: Physical 4-LUT Implementation

defects are randomly distributed. So, we get to choose which 4-LUTs to use. However, we
can do better. We can also invert the polarity of the inputs and possibly permute the inputs.
Both of these will change how the logical LUT function is mapped onto the physical LUT.
It is understanding the impact of this local transformation that we want to characterize in
this first assignment. In later assignments we will deal with the issue of mapping to different
physical LUTs if we cannot use these local changes to make a logical function compatible
with a partially-defective physical 4-LUT.

Warmup Exercise Consider the function: (A xor B) * C * D.

1. Assuming that A maps to input 0, B to input 1, C to input 2, and D to input 3, what
is the value (0 or 1) of each of the 16 configuration memory bits?

2. Assuming that A maps to input 0, B to input 1, C to input 2, and D to input 3,
identify the set of multiplexers that must be fully functional and the set that can be
constant-output.

3. Identify how the set of tolerable constant-output multiplexers changes if you invert
the polarity on input 2. That is, input 2 now receives /C rather than C, but you want
to implement the same function.

4. Identify how the set of tolerable constant-output multiplexers changes if you now
assign B to input 3 and D to input 1, leaving A and C assigned to inputs 0 and 2.

5. Considering polarity changes and input permutation, what mapping transforms may
change the number of tolerable constant-output multiplexers and what transforms
will not?

6. How many different input permutations are there?

7. Considering both polarity selection and input permutations, how many different ways
are there to map a logical 4-input gate to a physical 4-LUT?

2



ESE535 Spring 2013

Assignment 2 Task Develop and analyze a cost function to identify how hard a logical
function (a gate) will be to map to a partially defective physical LUT.

• As a “ground-truth” metric, we will compute hardness as the number of partially
defective LUTs in the set of all possible defect sets for a 4-LUT that are compatible
with the function. The fewer that are compatible, the harder the logical function will
be to map.

• You want to find a cost function you can calculate just based on the logical function
that is predictive of this “ground-truth” metric. That is, you do not want to compare
compatibility to all possible defects in order to assess the hardness of mapping a logic
function. This cost function should be inexpensive to compute.

You have two weeks for this whole assignment, but it is broken into two parts with a com-
ponent that needs to be turned in each week.

Part A: Implement the “ground-truth” characterization and a simple cost function we give
you.

CostFunA(fun): max over all permutations of inputs, perm

cpair(fun, perm) =
7∑

j=0

(c2j == c2j+1) (1)

where cj is the j-th configuration bit in the 4-LUT for the permuted function. That is, cpair
is a value form 0 to 8 that adds a one for every identical pairing of configuration bits.

We don’t think this is the best cost function. Rather, we think it is an easy starting point
that you can definitely improve upon in Part B.

Part B: Determine and implement a better cost function.

3



ESE535 Spring 2013

Code Base: A heavily used academic package that performs clustering, placement, and
routing is t-vpack/vpr from the University of Toronto [3, 4, 5]. We are using code from
the t-vpack/vpr distribution as a basis for our work (reading the initial netlist, representing
the netlist in C, writing out the final cluster and placement). Using this code base, we
avoid having to rewrite these I/O and representation routines, allowing us to focus on the
optimization.

This assignment only leverages the BLIF reading capabilities of the code base. We will use
more of the functionality in later assignments.

For later assignments, you may want to consult the VPR manual (available in ~ese535/

spring2013/manual_430.pdf) for descriptions of the mesh architecture and placement co-
ordinate system. Particularly Figure 2 shows what the basic module of a LUT and FF looks
like. Figure 10 shows the coordinate system. The manual also defines the netlist format.
Since we provide code to read and write this formats, you do not have to implement it, but
you will likely find it useful for debugging to be able to look at these files and make sense of
them.

We are providing an infrastructure in C. In addition to providing the base t-vpack/vpr netlist
capabilities, we are also providing support for representing LUT programming bits.

Pickup the code in assign2.tar from ~ese535/spring2013/assign2.tar on eniac. Un-
pack it with tar -xvf assign2.tar. Run make to build. This should produce an executable
defect main which you can run. The makefile in the test subdirectory runs defect main

on the various cases needed for this assignment and provides an example of how to use it.
Please use the architecture and target parameters in the makefile for producing your results
for this assignment.

For this assignment, we provide the basic code outline, but you will need to complete various
functions as identified below. In later assignments you will have more responsibility for code
structure and decomposition.

Representations: We will represent a permuted LUT function as an integer. We will
similarly represent defects as an integer where a bit value of 0 represents fully functional
and 1 represents constant-output. Position are as shown in Figure 1. This means position
0 is unused.

A quick overview of code:

• defect main.c — contains the main function that drives the overall optimizer; it also
contains the command-line option parsing. You may need to modify this to enable
various debugging options. However, note that we will likely provide you an updated
main functions for later assignments, so be prepared to merge your changes and ours.

• globals.h — defines global data structures: notably the block and net datastructure
that represent the netlist.

• defect main.h — defines the type structure for block and net.
• output clustering.c — prints out the cluster. You should not need to touch.
• read blif.c — prints out the cluster. Also creates initial lut encoding (.lut field in

s block) You should not need to touch.

4



ESE535 Spring 2013

• defect.c – provides the compatibility check between a LUT function and a partially
defective physical LUT. Also includes code to compute defect compatibility for all
LUTs in the design.

• ff pack.c — packs LUTs and FFs. You should not need to touch.
• heapsort.c — a sort implementation. You should not need to touch. You may find

it useful to use this. There is an example of use in asap.c

• queue.c — a queue implementation. You should not need to touch. You may find it
useful to use this.

• util.c — various utilities. You should not need to touch. You may or may not want
to use some of these utilities.

You need to complete code in:

• transform.c — perform permutations and input polarity inversions, explore full set
of transforms.

• cost.c – implement CostFunA , then your cost function for Part B.

Statistics: For this assignment we will want to visualize and compute the correlation be-
tween the “ground truth” hardness calculation and our cost functions. To do that, the code
will produce an output file with comma-separated values (CSV) to be read by a statistics
package, R. We provide an R script (correlation.R) to produce a correlation plot and
calculate the correlation coefficient.

Caveat: The code not borrowed from t-vpack/vpr (defect.c, read blif.c, defect main.c) was
newly written or heavily revised for this assignment. While we have tried to test it, like any
recently developed code it may contain bugs. Let us know if you have any problems. Simi-
larly, we may need to provide updated source as we fix bugs or add additional functionality.

We strongly recommend you become familiar with a debugger (gdb if you don’t already have
a favorite). Since this is C code, it is quite likely you will need to debug memory errors. It
is much easier to do this with the proper tools.

We will likely ask you to use your solution from earlier assignments (like this one) as a
component of or as a baseline for comparison for your solutions for subsequent assignments.
So, you will want to keep your solution to each piece around for comparison.

Part A turnin: You will need to upload two files. We have created separate assignments
on blackboard so that you only need to submit a single file to each assignment

1. assign2a-warmup: a single PDF with

• Your answers to the warmup exercise
• Correlation plot of “ground truth” hardness versus CostFunA estimates for either

the design s1423 or frisc-em4.
• A table summarizing Correlation Coefficient between the “ground truth” and

CostFunA for all 6 sample blif files.
• Description of what is weak about CostFunA – not just that it could be better

correlated; discuss what the cost function is not capturing that may be important
and/or why it is doing a poor job of characterizing the hardness

5



ESE535 Spring 2013

2. assign2a-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign2.tar to create the tar file
• test that you can unpack your assign2.tar and build and run tests from there

before you upload to blackboard; we will build your code and test it.

Part B turnin: You will need to upload two files. We have created separate assignments
on blackboard so that you only need to submit a single file to each assignment

• assign2b-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built – same as above)

• assign2b-writeup: a single PDF with

1. Definition of your cost function
2. Description of why this cost function is good and how you arrived at it
3. Correlation plot of “ground truth” hardness versus your cost function for either

the design s1423 or frisc-em4.
4. A table summarizing Correlation Coefficient between the “ground truth” and

CostFunA (same as Part A) and between “ground truth” and your cost function
(new for part B) for all 6 sample blif files.

References

[1] N. Mehta, R. Rubin, and A. DeHon, “Limit Study of Energy & Delay Benefits of
Component-Specific Routing,” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2012, pp. 97–106.

[2] N. Mehta, “An ultra-low energy, variation tolerant fpga architecture using component-
specific mapping,” Ph.D. dissertation, California Institute of Technology, 2013. [Online].
Available: http://resolver.caltech.edu/CaltechTHESIS:10072012-230900231

[3] V. Betz and J. Rose, “VPR: A new packing, placement, and routing tool for FPGA
research,” in Proceedings of the International Conference on Field-Programmable Logic
and Applications, ser. LNCS, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds., no. 1304.
Springer, August 1997, pp. 213–222.

[4] V. Betz, “VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs,”
http://www.eecg.toronto.edu/∼vaughn/vpr/vpr.html, March 27 1999, version 4.30.

[5] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Norwell, Massachusetts, 02061 USA: Kluwer Academic Publishers, 1999.

6


