
ESE535 Spring 2013

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2013 Assignment #5 Monday, March 11

Due: Assign 5a: Monday, March 18, beginning of class.
Due: Assign 5b: Monday, March 25, beginning of class.

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration You may not discuss algorithmic and testing approaches. You may give
tutorial assistance on using OS, compiler, and debugging tools. All code development should
be done independently. You may not share code or show each other code solutions. All
writeups must be the work of the individual.

Writeup Turn-in assignments on blackboard. See details on course web page. No hand-
writing or hand-drawn figures. Details for turnin are at the end.

Project Goal for this phase Place LUTs into specific cluster locations aware of the exact
defects on a particular chip so that it will yield while minimizing total linear wire length.

You may use more rows and columns. The wirelength minimization both acts to encourage
good placements and to minimize the size of the array you use.

Opportunity Knowing the exact defects for a particular chip, you can avoid placing logical
LUTs into a cluster that would be incompatible with the cluster defects. If necessary, you
can spread-out the design onto a larger array to access more potentially compatible LUTs.

Assignment 5a Task Produce a legal mapping that will yield.

• The number of LUTs assigned to the cluster will not exceed a specified cluster size.
• The total number of distinct inputs to the cluster will not exceed a specified number

of cluster inputs.
• The LUTs assigned to a cluster can be matched to compatible, partially defective

physical LUTs in cluster

Write a function for computing the change in wirelength that would result from moving a
block to a new (x,y) location in the mesh. This function must not use the global wirelen
function in mesh.c, and it should be efficient. Treat wires as point-to-point Manhattan-
distance wiring (no optimization for shared fanout wires on a net) and include both the
wirelength of the inputs to the block and the output of the block connected to its successors.

Assignment 5b Task Minimize wirelength while achieving the legal mapping that will
yield.

Even with the two components, 5a is probably less than a week’s work, while 5b is open
ended. You would do well to plan to finish 5a early and start working on 5b before the 5a
deadline.

1



ESE535 Spring 2013

Code Base: We extend the same basic code base we have developed in Assignments 2–4.

Pickup the code in assign5.tar from ~ese535/spring2013/assign5.tar on eniac. Un-
pack it with tar -xvf assign5.tar. Run make to build. This should produce an executable
dplace which you can run. The makefile in the test subdirectory runs dplace on the
various cases needed for this assignment and provides an example of how to use it. Please
use the architecture and target parameters in the makefile for producing your results for
this assignment.

Representations: No representation changes for this assignmet. For this assignmet the
(x,y) positions take on their traditional signficance.

You may want to consult the VPR manual (available in ~ese535/spring2013/manual_430.

pdf) for descriptions of the mesh architecture and placement coordinate system. Particularly
Figure 2 shows what the basic module of a LUT and FF looks like. Figure 10 shows the
coordinate system.

A quick overview of code:

• dplace.c — contains the new main function that drives the placement. There are now
two different case statements operating on approach inputs. The first is a matching ap-
proach and the second is a placement approach. These are selected by the -approach

(for placement) and -match (for matching) options. The makefile in the test direc-
tory is setup to provide the options. The cryptic file name .mXpY (.m2p0, .m2p1,
.m2p3) correspond to these options. We will be using your match (mapping 2) for this
assignment.

• test chip.c – reads in test chips, actually calls your placement routine and matching
functions, and collects and writes results.

• sequential place.c – will not achieve a defect-free assignment; this has been changed
to automatically increase the size of the mesh until it can place everything; this means
there is no more need to use -pside 1. Note that you must reload the defect map
after resizing the mesh as shown here.

You need to complete code in:

• your place.c – your place legal and your place good – this is where your Assignment 5
answers goes.

• delta wirelen.c – you need to fillin the code for delta wirelen here for Assign-
ment 5a.

You will also need your transform.c and cost.c from Assignment 2 and match.c from
Assignment 3.

Note that the placement routine (your place) is called after chip defect maps are loaded.
This is different from how your pack was called in Assignment 4.

Caveat: The code not borrowed from t-vpack/vpr (test chip, mesh, sequential place)
was newly written or heavily revised for this assignment. While we have tried to test it, like

2



ESE535 Spring 2013

any recently developed code it may contain bugs. Let us know if you have any problems.
Similarly, we may need to provide updated source as we fix bugs or add additional function-
ality. The code for Assignment 5 fixes the errors flagged earlier where there was confusion
between xdim and ydim.

Assignment 5a turnin: You will need to upload two files. We have created separate
assignments on blackboard so that you only need to submit a single file to each assignment.

1. assign5a-writeup: a single PDF with

• Pseudocode for your legal LUT placement algorithm
• Explanation of your legal LUT placement algorithm
• Table of results reporting the runtime, array dimensions, and wirelength for each

of the benchmarks (7) on each of the provided test chips (9). This is a total of
7 × 9 = 63 cases.

• Pseudocode for your delta wirelen algorithm
• Explanation of your delta wirelen algorithm
• Assessment of the complexity of your delta wirelen algorithm in terms of the

relevant variables in the program, such as lut size, num blocks, mesh x and y
dimensions, inputs per cluster; many of these are not relevant, so you need to
identify the ones that are and write an expression in terms of the relevant ones.

2. assign5a-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign5.tar to create the tar file
• test that you can unpack your assign5.tar and build and run tests from there

before you upload to blackboard; we will build your code and test it.

Assignment 5b turnin: You will need to upload two files. We have created separate
assignments on blackboard so that you only need to submit a single file to each assignment.

• assign5b-writeup: a single PDF with

1. Pseudocode for your wire-length minimizing LUT placement algorithm
2. Explanation of your wire-length minimizing LUT placement algorithm
3. Highlights from the tuning and experimentation you used to arrive at your final

algorithm. Use graphs and quantitative results to support the conclusions you
drew.

4. Table of results reporting the runtime, array dimensions, and wirelength for each
of the benchmarks on each of the provided test chips for both your legal placement
routine from Assignment 5a and your wire-length-minimizing placement routing
from Assignment 5b.

• assign5b-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built – same as above)

3


