
1

Penn ESE535 Spring 2013 -- DeHon 1

ESE535:
Electronic Design Automation

Day 13: February 27, 2013
Dataflow

Penn ESE535 Spring 2013 -- DeHon 2

Previously

•  Scheduling of
concurrent operations

A7 A8

B11

A9

B2

B3

B4

A1

A2

A3

A4

A5

A6

A10 A11 A13 A12

B5

B1

B6

B7

B8

B9

B10

Penn ESE535 Spring 2013 -- DeHon 3

Want to See

•  Abstract compute model
– natural for parallelism and hardware

•  Describe computation abstracted from
implementation
– Defines correctness

Penn ESE535 Spring 2013 -- DeHon 4

Today

•  Dataflow
•  SDF

– Single rate
– Multirate

•  Dynamic Dataflow
•  Expression

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2013 -- DeHon 5

Parallelism Motivation

Penn ESE535 Spring 2013 -- DeHon 6

Producer-Consumer Parallelism

•  Can run concurrently
•  Just let consumer know when producer

sending data

Stock
predictions encrypt

2

Penn ESE535 Spring 2013 -- DeHon 7

Pipeline Parallelism

•  Can potentially all run in parallel
•  Like physical pipeline
•  Useful to think about stream of data

between operators

ME DCT VQ code

Penn ESE535 Spring 2013 -- DeHon 8

DAG Parallelism

•  Doesn’t need to be linear pipeline
•  Synchronize inputs

Check/decode
block synchronize

Decode
video

Decode
audio

Penn ESE535 Spring 2013 -- DeHon 9

Graphs with Feedback

•  In general may hold state
•  Very natural for many tasks

+ +
×k

×k ×k

×k

Penn ESE535 Spring 2013 -- DeHon 10

Definitions

Penn ESE535 Spring 2013 -- DeHon 11

Dataflow / Control Flow

Dataflow
•  Program is a graph

of operators
•  Operator consumes

tokens and
produces tokens

•  All operators run
concurrently

Control flow (e.g. C)
•  Program is a

sequence of
operations

•  Operator reads
inputs and writes
outputs into
common store

•  One operator runs at
a time
–  defines successor

Penn ESE535 Spring 2013 -- DeHon 12

Token

•  Data value with presence indication
– May be conceptual

•  Only exist in high-level model
•  Not kept around at runtime

– Or may be physically represented
•  One bit represents presence/absence of data

3

Token Examples?

•  What are familiar cases where data may
come with presence tokens?
– Network packets
– Memory references from processor

•  Variable latency depending on cache presence

– Start bit on serial communication

Penn ESE535 Spring 2013 -- DeHon 13 Penn ESE535 Spring 2013 -- DeHon 14

Operator

•  Takes in one or more inputs
•  Computes on the inputs
•  Produces results

•  Logically self-timed
–  “Fires” only when input set present
– Signals availability of output

Penn ESE535 Spring 2013 -- DeHon 15 Penn ESE535 Spring 2013 -- DeHon 16

Dataflow Graph
•  Represents

– computation sub-blocks
–  linkage

•  Abstractly
– controlled by data presence

Penn ESE535 Spring 2013 -- DeHon 17

Dataflow Graph Example In-Class Dataflow Example

Penn ESE535 Spring 2013 -- DeHon 18

4

Penn ESE535 Spring 2013 -- DeHon 19

Stream

•  Logical abstraction of a persistent point-
to-point communication link
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data

from source to sink

stream

Penn ESE535 Spring 2013 -- DeHon 20

Streams

•  Captures communications structure
– Explicit producerconsumer link up

•  Abstract communications
– Physical resources or implementation
– Delay from source to sink

Register Transfer Level
(RTL)

•  Describe computation as logic
and registers

•  Equations (logic) define values
to be clocked into next register

•  Typically what you right in
VHDL, Verilog

Penn ESE535 Spring 2013 -- DeHon 21

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2013 -- DeHon 22

Dataflow Abstracts Timing

•  Doesn’t say
–  on which cycle calculation occurs [contrast RTL]

•  Does say
–  What order operations occur in
–  How data interacts

•  i.e. which inputs get mixed together

•  Permits
–  Scheduling on different # of resources
–  Operators with variable delay [examples?]
–  Variable delay in interconnect [examples?]

Examples
•  Operators with Variable Delay

– Cached memory or computation
– Shift-and-add multiply
–  Iterative divide or square-root

•  Variable delay interconnect
– Shared bus
– Distance changes

•  Wireless, longer/shorter cables

– Computation placed on different cores?
Penn ESE535 Spring 2013 -- DeHon 23 Penn ESE535 Spring 2013 -- DeHon 24

Difference:
Dataflow Graph/Pipeline

5

Penn ESE535 Spring 2013 -- DeHon 25

Clock Independent Semantics

Interconnect
Takes n-clocks

Penn ESE535 Spring 2013 -- DeHon 26

Semantics

•  Need to implement semantics
–  i.e. get same result as if computed as

indicated
•  But can implement any way we want

– That preserves the semantics
– Exploit freedom of implementation

Penn ESE535 Spring 2013 -- DeHon 27

Dataflow Variants

Penn ESE535 Spring 2013 -- DeHon 28

Synchronous Dataflow (SDF)

•  Particular, restricted form of dataflow
•  Each operator

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operators with inputs
available at any point in time

Penn ESE535 Spring 2013 -- DeHon 29

Synchronous Dataflow

+ +
×k

×k ×k

×k

Penn ESE535 Spring 2013 -- DeHon 30

SDF: Execution Semantics

while (true)
Pick up any operator
If operator has full set of inputs

Compute operator
Produce outputs
Send outputs to consumers

6

Penn ESE535 Spring 2013 -- DeHon 31

Multirate Synchronous Dataflow

•  Rates can be different
– Allow lower frequency operations
– Communicates rates to CAD

•  Something not clear in RTL
•  Use in scheduling, provisioning

– Rates must be constant
•  Data independent

decimate
2 1

Penn ESE535 Spring 2013 -- DeHon 32

SDF

•  Can validate flows to check legal
–  Like KCL token flow must be conserved
–  No node should

•  be starved of tokens
•  Collect tokens

•  Schedule onto processing elements
–  Provisioning of operators

•  Provide real-time guarantees

•  Simulink is SDF model

Penn ESE535 Spring 2013 -- DeHon 33

SDF: good/bad graphs

1

2

1

1

1

1

1

1

1

1

1

1

Penn ESE535 Spring 2013 -- DeHon 34

SDF: good/bad graphs

1

1

1

2

1

1

1

1

1

2

1

1

1

2

1

2

1

1

Penn ESE535 Spring 2013 -- DeHon 35

Dynamic Rates?

•  When might static rates be limiting?
– Compress/decompress

•  Lossless
•  Even Run-Length-Encoding

– Filtering
•  Discard all packets from geraldo

– Anything data dependent

Penn ESE535 Spring 2013 -- DeHon 36

Data Dependence

•  Add Two Operators
– Switch
– Select

7

Penn ESE535 Spring 2013 -- DeHon 37

Switch

Penn ESE535 Spring 2013 -- DeHon 38

Filtering Example

Geraldo?

switch

discard
dup

Penn ESE535 Spring 2013 -- DeHon 39

Select

Penn ESE535 Spring 2013 -- DeHon 40

Constructing
If-Then-Else

Penn ESE535 Spring 2013 -- DeHon 41

Select Example

select

>

select

select

switch switch

In-Order
Merge of
Streams
(smallest
 to largest)

Penn ESE535 Spring 2013 -- DeHon 42

Looping

•  for (i=0;i<Limit;i++)

8

Universal

•  Once we add switch and select,
the dataflow model is as power as any
other
– E.g. can do anything we could do in C
–  “Turing Complete” in formal CS terms

Penn ESE535 Spring 2013 -- DeHon 43 Penn ESE535 Spring 2013 -- DeHon 44

Dynamic Challenges

•  In general, cannot say
–  If a graph is well formed

• Will not deadlock
– How many tokens may have to buffer in

stream
– Right proportion of operators for

computation

Penn ESE535 Spring 2013 -- DeHon 45

Expression

How would we capture this in a
Programming Language?

Feels a bit tacked-on
…not flow that well with rest.
Might think about how to do better.

Penn ESE535 Spring 2013 -- DeHon 46

Expression

•  Could express operators in C/Java
– Each is own thread

•  Link together with Streams
•  E.g. SystemC

Penn ESE535 Spring 2013 -- DeHon 47

C Example

while (!(eos(stream_a) && !(eos(stream_b))
A=stream_a.read();
B=stream_b.read();
Out=(a+b)*(a-b);
stream_out.write(Out);

Penn ESE535 Spring 2013 -- DeHon 48

Connecting up Dataflow

stream stream1=new stream();
operator prod=new stock(stream1);
operator cons=new encrypt(stream1);

Stock
predictions encrypt

9

What’s the Point?
•  Seen repeatedly: exploit freedom

– To reduce costs
•  A1: How do we capture freedom that exists

in computational?
– Higher-level than an implementation
– Perhaps as a useful intermediate

•  A2: How do we allow freedom for
implementations (or instances) to take
variable time?

Penn ESE535 Spring 2013 -- DeHon 49 Penn ESE535 Spring 2013 -- DeHon 50

Summary

•  Dataflow Models
– Simple pipelines
– DAGs
– SDF (single, multi)-rate
– Dynamic Dataflow

•  Allow
– express parallelism
–  freedom of implementation

Penn ESE535 Spring 2013 -- DeHon 51

Big Ideas:

•  Dataflow
– Natural model for capturing computations
– Communicates useful information for

optimization
•  Linkage, operator usage rates

•  Abstract representations
– Leave freedom to implementation

Penn ESE535 Spring 2013 -- DeHon 52

Admin

•  Homework 4 Due Today
•  Spring Break next week
•  Back on Monday 3/11

– Reading on Blackboard

