
1

Penn ESE535 Spring 2013 -- DeHon 1

ESE535:
Electronic Design Automation

Day 15: March 13, 2013
High Level Synthesis II
Dataflow Graph Sharing

Penn ESE535 Spring 2013 -- DeHon 2

Today

Sharing
•  Dataflow subgraph

– Pattern identification
– Pattern selection

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2013 -- DeHon 3

Flow Review

Penn ESE535 Spring 2013 -- DeHon 4

Additional Concerns?
What are we still not satisfied with?
•  Parallelism in hyperblock

–  Especially if memory sequentialized
•  Disambiguate memories?
•  Allow multiple memory banks?

•  Only one hyperblock active at a time
–  Share hardware between blocks?

•  Data only used from one side of mux
–  Share hardware between sides?

•  Most logic in hyperblock idle?
–  Couldn’t we pipeline execution?

Preclass

•  Common subgraphs?
•  How would we like to

share?
–  If trying to avoid slowdown
–  If willing to make area-time

tradeoffs?

Penn ESE535 Spring 2013 -- DeHon 5

Subgraph Sharing

•  Can potentially share identical
subgraphs

•  Can share similar subgraphs

Penn ESE535 Spring 2013 -- DeHon 6

2

Evaluating Subgraph Sharing

•  What do we have to do to share
subgraphs?

•  When is it worthwhile?
– How big does graph need to be?
– How much overhead to share?

Penn ESE535 Spring 2013 -- DeHon 7

Example

•  Muxes on inputs to an adder
– Probably bigger than just having two

adders
– 2(Amux) + Aadd > 2(Aadd)

•  Muxes on input to mulitipler
– Probably smaller than two multipliers
– 2(Amux+Ampy) < 2(Ampy)

Penn ESE535 Spring 2013 -- DeHon 8

Extreme Case

•  If ignored multiplexing overhead,
what would we get?

Penn ESE535 Spring 2013 -- DeHon 9

VLIW Extreme

•  Sketch
– Each basic block requires a

set of operators to achieve
minimum path length

– Union sets over all basic
blocks

– Build VLIW with that
operator set

•  Why unsatisfying?
Penn ESE535 Spring 2013 -- DeHon 10

+ X X

Favorable Subgraphs

•  Particularly beneficial when I/O into
subgraph small
– Overhead for muxing proportional to inputs

Penn ESE535 Spring 2013 -- DeHon 11

Approach

•  Find candidate, reusable subgraphs
•  Select a cover set of subgraphs
•  Assign original graph to subgraphs

– Assess benefits of sharing
•  Patch together subgraphs with

control and multiplexing

Penn ESE535 Spring 2013 -- DeHon 12

3

Find Subgraphs

•  How might we find the set of candidate
subgraphs?

Penn ESE535 Spring 2013 -- DeHon 13

Finding Subgraphs

•  Keep set of subgraphs of size k
•  Create subgraphs of size k+1 from

subgraphs of size k
– By adding a neighboring node

•  Maybe several such expansions for each k-
subgraph

•  Careful: can end up with exponential
subgraphs

Penn ESE535 Spring 2013 -- DeHon 14

Optimization

•  Canonicalize subgraphs so recognize
when encounter same subgraph again
– Keep set of subgraphs small

Penn ESE535 Spring 2013 -- DeHon 15

Optimization
•  Compute candidate graph patterns

during subgraph generation
– Each subgraph may become a candidate
– Keep track of subgraphs that might match

with candidate subgraphs
– As add subgraph, compare it with

candidate patterns and add to list if “close”
enough

– At end of a given graph size, prune out
patterns with too few potential matches

Penn ESE535 Spring 2013 -- DeHon 16

Close enough?

•  Conceptually: not too expensive to use
the candidate pattern

•  Concretely: compute a distance metric
between graph and pattern
– Minimum cost of edits to morph one graph

into another
•  E.g. relabel nodes, remove nodes

– Want to capture potential cost of adding
muxes and control

Penn ESE535 Spring 2013 -- DeHon 17 Penn ESE535 Spring 2013 -- DeHon 18 [Cong & Jiang / FPGA 2008]

4

Cover Subgraphs

•  What’s our goal?

Penn ESE535 Spring 2013 -- DeHon 19

Cover Goal

•  Minimize area

•  Minimum added latency
– Delay of BB covered by p in P

Penn ESE535 Spring 2013 -- DeHon 20

€

A(p) +
P
∑ Ause(p∈P)

BB
∑

Cover Subgraph

•  Given a proposed set of pattern graphs,
how can we cover?

Penn ESE535 Spring 2013 -- DeHon 21

Cover Subgraph

•  How many sets if we explored them all?

Penn ESE535 Spring 2013 -- DeHon 22

Greedy Cover Subgraph

•  How might we cover greedily?

Penn ESE535 Spring 2013 -- DeHon 23

Greedy Cover Subgraph

•  Select most beneficial pattern
•  Assign it to the stuff it covers

– Add logic to share accommodate
– Remove those as things that need to be

covered
•  Repeat until all covered or no benefit

Penn ESE535 Spring 2013 -- DeHon 24

5

Most Beneficial Pattern

•  How would we define pattern benefit?

Penn ESE535 Spring 2013 -- DeHon 25

Beneficial Pattern

•  Area

•  Latency

Penn ESE535 Spring 2013 -- DeHon 26
€

|P |
latency(P)€

N * (mux(io) +mux(internal))+ area(P)
N *mux(io) + area(P)

[Cong & Jiang / FPGA 2008]

Pattern and Graph Statistics

Penn ESE535 Spring 2013 -- DeHon 27 [Cong & Jiang / FPGA 2008] Penn ESE535 Spring 2013 -- DeHon 28

Big Ideas:

•  Sharing
•  Estimation
•  Techniques

– Graph Matching
– Covering
– Greedy

Penn ESE535 Spring 2013 -- DeHon 29

Admin

•  Assignment 5a due Monday
•  Reading for Monday online

