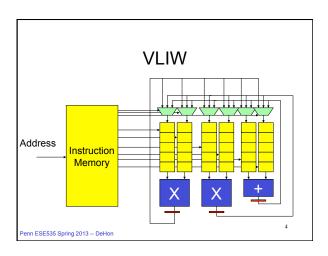
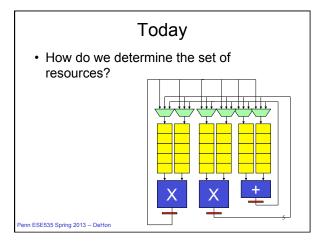
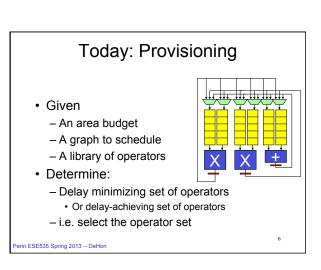

ESE535: Electronic Design Automation

Day 16: March 18, 2013 Architecture Synthesis (Provisioning, Allocation)

Penn ESE535 Spring 2013 -- DeHon






Previously

- General formulation for scheduled operator sharing
 - VLIW
- Fast algorithms for scheduling onto fixed resource set
 - List Scheduling

Penn ESE535 Spring 2013 -- DeHon

Exhaustive

- 1. Identify all area-feasible operator sets
 - E.g. preclass exercise
- 2. Schedule for each
- 3. Select best
- → optimal
- Drawbacks?

Penn ESE535 Spring 2013 -- DeHon

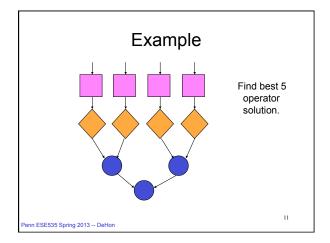
Exhaustive

- How large is space of feasible operator sets?
 - As function of
 - operator types O
 - Types: add, multiply, divide,
 - Maximum number of operators of type m

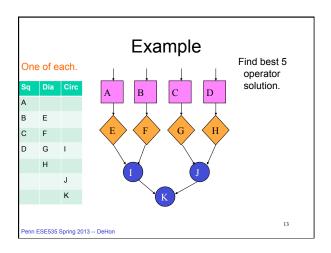
 m^{O}

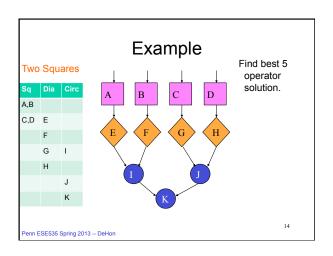
Penn ESE535 Spring 2013 -- DeHon

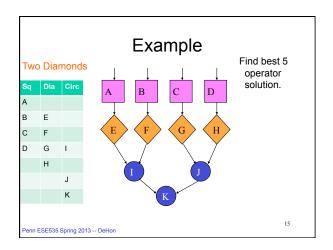
Implication

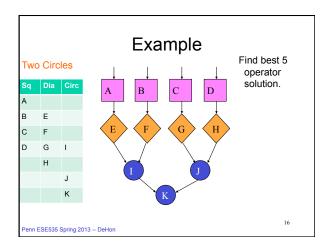

• Feasible operator space can be too large to explore exhaustively

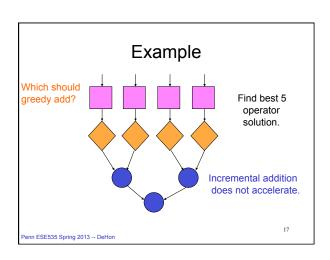
Penn ESE535 Spring 2013 -- DeHon

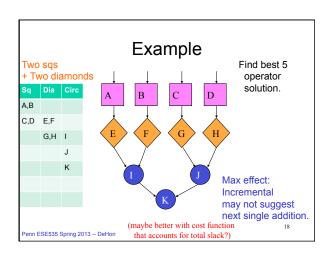

Greedy Incremental


- Start with one of each operator
- · While (there is area to hold an operator)
 - Which single operator
 - Can be added without exceeding area limit?
 - And provides largest benefit/operator-area?
 - Add one operator of that type
- How long does this run?
 - T_{schedule}(E)* O(operator-types * A)
- · Weakness?


Penn ESE535 Spring 2013 - DeHon







Analytic Formulation

Penn ESE535 Spring 2013 -- DeHon

19

Challenge

- Scheduling expensive
 - O(|E|) or O(|E|*log(|V|)) using list-schedule
- · Results not analytic
 - Cannot write an equation around them
- · Bounds are sometimes useful
 - No precedence → is resource bound
 - Often one bound dominates
 - Latency bound unaffected by operator count

Penn ESE535 Spring 2013 - DeHon

20

Estimations

- Step 1: estimate with resource bound
 O(|E|) vs. O(|V|) evaluation
- Step 2: use estimate in equations
 T=max(N₁/M₁,N₂/M₂,....)
- · Most useful when RB>>CP

Penn ESE535 Spring 2013 -- DeHon

21

23

Constraints

- · Let A_i be area of operator type i
- Let M_i by number of operators of type i

$$\sum A_i \times M_i \leq Area$$

(start summary of variables on board)

22

Penn ESE535 Spring 2013 - DeHon

Achieve Time Target

- · Want to achieve a schedule in T cycles
- Each resource bound must be less than T cycles:
 - $N_i/M_i \le T$

Penn ESE535 Spring 2013 -- DeHon

of oquations

Algebraic Solve

- · Set of equations
 - $-N_i/M_i \leq T$
 - Σ A_i M_i ≤ Area
- · Assume equality for time bound
- N_i/M_i=T → M_i=N_i/T

$$\frac{\sum A_i \times N_i}{T} \le Area_{24}$$

Penn ESE535 Spring 2013 - DeHon

Rearranging

$$\frac{\sum A_i \times N_i}{T} \leq Area$$

$$\frac{\sum A_i \times N_i}{Area} \leq T$$

Penn ESE535 Spring 2013 -- DeHon

Bounding T

· Gives Lower Bound on T

$$\frac{\sum A_i \times N_i}{Area} \le T$$

Intuition: N of each is right balance given unbounded area; Scale to area available.

Penn ESE535 Spring 2013 - DeHon

Preclass

• What is T_{lower} for preclass?

$$\frac{\sum A_i \times N_i}{Area} \le T$$

$$T \ge \frac{1 \times 8 + 2 \times 4}{7} = \frac{16}{7} \approx 2.3$$
 $T \ge 3$

Penn ESE535 Spring 2013 -- DeHor

Back Substitute from T to x

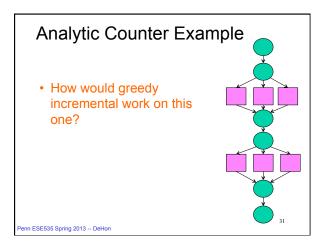
•
$$M_i = N_i / T$$

$$\sum A_i \times N_i \le T$$

Area

- M_i won't necessarily be integer
 - Round down definitely feasible solution
 - May have room to move a few up by 1
- · Reduces range may need to search
 - (just over the residual area once rounded down)

Penn ESE535 Spring 2013 - DeHon


Preclass

- M_i=N_i/T
- T>=3
- M_{add}, M_{mpv}?
- $M_{add} = 8/3 \implies 2 \text{ or } 3$
- $M_{mpv} = 4/3 \rightarrow 1 \text{ or } 2$

Penn ESE535 Spring 2013 -- DeHon

29

Counter Example • 1 Unit each • Area = 4 Units • What would analytic predict? • What is best? • How does CP compare to RB? • Analytic Resource Estimate - Most useful when RB>>CP

ILP

Maybe we can do exhaustive, if we formulate properly.

Penn ESE535 Spring 2013 - DeHon

32

ILP

- · Integer Linear Programming
- Formulate set of linear equation constraints (inequalities)
 - $Ax_0+Bx_1+Cx_2 \le D$
 - $x_0 + x_1 = 1$
 - A,B,C,D constants
 - x_i variables to satisfy
 - No products on variables, just linear weighted sums
- · Can constrain variables to integers
- No polynomial time guarantee
 - But often practical
 - Solvers exist (significant piece next lecture)

Penn ESE535 Spring 2013 -- DeHon

ILP Provision and Schedule

Now to make it look like an ILP nail...

 Formulate operator selection and scheduling as ILP problem

Penn ESE535 Spring 2013 - DeHon

34

Formulation

- Integer variables M_i
 - number of operators of type i
- 0-1 (binary) variables x_{i,j}
 - 1 if node i is scheduled into timestep i
 - 0 otherwise
- Variable assignment completely specifies operator selection and schedule
- This formulation for achieving a target time T
 - j ranges 0 to T-1

Penn ESE535 Spring 2013 -- DeHon

35

33

Target T → Min T

- · Formulation targets T
- What if we don't know T?
 - Want to minimize T?
- · Do binary search for minimum T
 - How does that impact solution time?

Penn ESE535 Spring 2013 - DeHon

Constraints

What properties must hold true for a solution to be valid?

- 1. Total area constraints
- 2. Not assign too many things to a timestep
- 3. Assign every node to some timestep
- 4. Maintain precedence

Penn ESE535 Spring 2013 -- DeHon

37

(1) Total Area

· Same as before

$$\sum A_i \times M_i \leq Area$$

Penn ESE535 Spring 2013 - DeHon

38

(2) Not overload timestep

- · For each timestep j
 - For each operator type k

$$\sum_{o_i \in FU_k} x_{i,j} \le M_k$$

Penn ESE535 Spring 2013 -- DeHon

(3) Node is scheduled

· For each node in graph

$$\sum_{i} x_{i,j} = 1$$

Can narrow to sum over slack window.

Penn ESE535 Spring 2013 - DeHon

40

(4) Precedence Holds

• For each edge from node src to node snk

$$\sum_{j} j \times x_{src,j} - \sum_{j} j \times x_{snk,j} \leq -1$$

Can narrow to sum over slack windows.

Penn ESE535 Spring 2013 -- DeHon

Constraints

- 1. Total area constraints
- Not assign too many things to a timestep
- 3. Assign every node to some timestep
- 4. Maintain precedence

Penn ESE535 Spring 2013 - DeHon

ILP Solver

- ILP Solver can take these constraints and find a solution (satisfying assignment)
- On Wednesday, will see how to start to make this practical

Penn ESE535 Spring 2013 -- DeHon

SAT/ILP Scheduling Variant

(Demonstration)

<if time permits>

Penn ESE535 Spring 2013 - DeHon

43

Two Constraint Challenge

- Processing elements have limited memory
 - Instruction memory (data memory)
- Tasks have different requirements for compute and instruction memory
 - i.e. Run length not correlated to code length
- · No provisioning, scheduling

Penn ESE535 Spring 2013 -- DeHon

Plishker Task Example

Example: 4 Port DiffServ

Example: 4 Port DiffServ

Receive 1

Receive 2

Receive 3

Receive 3

Receive 4

Receive 3

Receive 4

Receive 3

Receive 3

Receive 3

Receive 3

Receive 4

Receive 3

Receive 4

Receive 3

Re

Task

 Task: schedule tasks onto PEs obeying both memory and compute capacity

Resource Receive Look-up DSBlock Transmit Execution Cycles 98 134 320 296

Example and ILP solution From Plishker et al. NSCD2004

enn ESE535 Spring 2013 -- pg 1011

Task

- Task: schedule tasks onto PEs obeying both memory and compute capacities
- → two capacity assignment problem
- → two capacity bin packing problem
- Task: i <C_i,I_i>

Penn ESE535 Spring 2013 - DeHon

SAT Packing

Variables:

A_{i,j} – task i assigned to resource j

Constraints

 $U_i = \sum_j A_{i,j} = 1$

- · Coverage constraints
- Uniqueness constraints
- Cardinality constraints
 - PE compute
 - PE memory

$$\sum_{i}^{n} (A_{i,j} \times C_i) \le PE.cap(j)$$

Penn ESE535 Spring 2013 -- DeHon

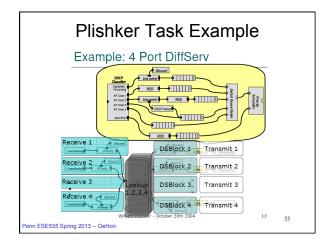
Allow Code Sharing

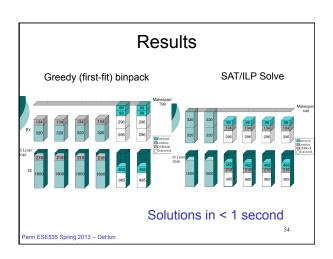
- · Two tasks of same type can share code
- · Instead of memory capacity
 - Vector of memory usage
- · Compute PE Imem vector
 - As OR of task vectors assigned to it
- Compute mem space as sum of nonzero vector entry weights (dot product)

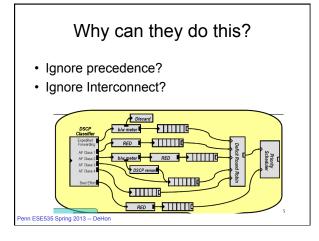
Penn ESE535 Spring 2013 - DeHon

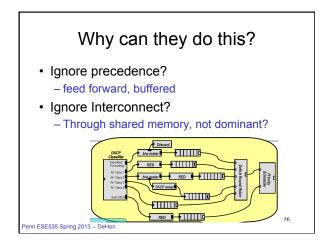
50

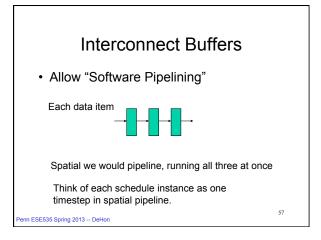
Allow Code Sharing

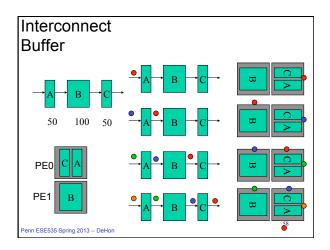

- · Two tasks of same type can share code
- · Task has vector of memory uage
 - Task i needs set of instructions k: T_{i.k}
- · Compute PE Imem vector
 - OR (all i): PE.Imem_{j,k}+=A_{i,j} * T_{i,k}
- PE Mem space
 - $PE.Total_Imem_i = \Sigma(PE.Imem_{i,k}*Instrs(k))$


Penn ESE535 Spring 2013 -- DeHon


Symmetries


- · Many symmetries
- · Speedup with symmetry breaking
 - Tasks in same class are equivalent
 - PEs indistinguishable
 - Total ordering on tasks and PEs
 - Add constraints to force tasks to be assigned to PEs by ordering
 - Plishker claims "significant runtime speedup"
 - Using GALENA [DAC 2003] psuedo-Boolean SAT solver


Penn ESE535 Spring 2013 - DeHon



Round up Algorithms and Runtimes

- Exhaustive Schedule
- · Greedy Schedule
- · Analytic Estimates
- · ILP formulation

Penn ESE535 Spring 2013 -- DeHon

Big Ideas:

- Estimators
- · Dominating Effects
- Reformulate as a problem we already have a solution for

– ILP

Technique: GreedyTechnique: ILP

rediffique: IEI

enn ESE535 Spring 2013 – DeHon

Admin

- Reading for Wednesday on web
- My grading priority now will be 5a

Penn ESE535 Spring 2013 -- DeHon