ESE535: **Electronic Design Automation**

Day 17: March 20, 2013 Modern SAT Solvers ({z}Chaff, GRASP, miniSAT)

enn ESE 535 Spring 2013 - DeHor

Behavioral (C, MATLAB, ...) Arch. Select Today RTL FSM assign SAT Two-level · Pruning Search Multilevel opt. Davis-Putnam Covering Retiming Data Structures Gate Netlist **Optimizations** Placement Routing - Watch2 - VSIDS Layout - ?restarts · Learning Masks nn ESE 535 Spring 2013 -- DeHon

Problem (almost)

- · SAT: Boolean Satisfiability
- · Given: logical formula g
- · Find a set of variable assignments that makes g true
- · Or conclude no such assignment exists

Penn ESE 535 Spring 2013 - DeHor

Example Uses

- · Provisioning/Scheduling from last time
- · Partitioning, Placement, Routing
- Can I find an assignment that causes this output to become true, false?
 - Automatic Test Pattern Generation (ATPG)
 - Static Timing Analysis (false paths)
- · Verification
 - Is this optimized logic the same as the specification logic?
- FSM Encoding

Problem (more precise)

- SAT: Boolean Satisfiability
- Given: logical formula g in CNF
- · Find a set of variable assignments that makes g true
- · Or conclude no such assignment exists

Penn ESE 535 Spring 2013 - DeHor

CNF

- · Conjunctive Normal Form
- · Logical AND of a set of clauses
 - Product of sums
- Clauses: logical OR of a set of literals
- Literal: a variable or its complement
- E.g.

(A+B+/C)*(/B+D)*(C+/A+/E)

enn ESE 535 Spring 2013 -- DeHon

CNF

- · Conjunctive Normal Form
- · Logical AND of a set of clauses
- To be satisfied:
 - Every clause must be made true
- (A+B+/C)*(/B+D)*(C+/A+/E)
 - -If know D=false
 - → B must be false

Penn ESE 535 Spring 2013 - DeHon

3-SAT Universal

- · Can express any set of boolean constraints in CNF with at most 3 literals per clause
- · Canonical NP-complete problem

enn ESE 535 Spring 2013 -- DeHon

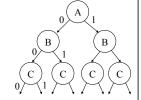
Convert to 3-SAT

- A=/B*/C=/(B+C) → universal primitive
 - We know can build any logic expression from nor2
- 3-CNF for A=/B*/C
 - (A+B+C)*(/A+/B)*(/A+/C)
 - If (B==0 && C==0) then A=1
 - If (B==1 || C==1) then A=0
- To convert any boolean formula to 3-CNF:
 - 1. Convert to nor2's
 - Or norX if not limited to 3-CNF formulas
 - 2. Then use above to convert nor2 expressions to set of clauses
 - 3. Combine (conjunct=AND) the clauses resulting from all the nor's

Penn ESE 535 Spring 2013 - DeHon

Brute Force Exhaustive

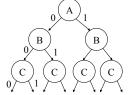
- · How could we find satisfying assignment?
- · How long would it take?
 - With N binary variables

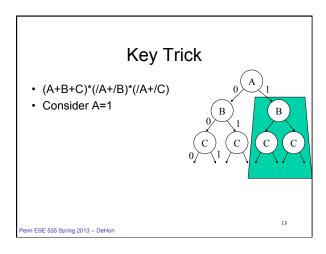

enn ESE 535 Spring 2013 -- DeHon

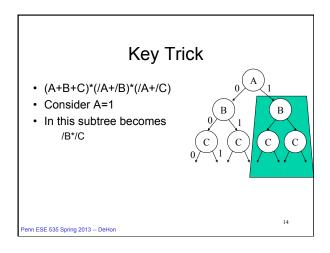
10

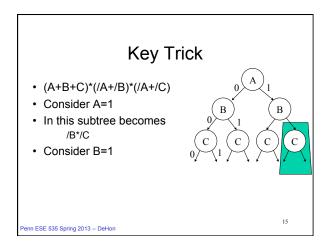
Search Formulation

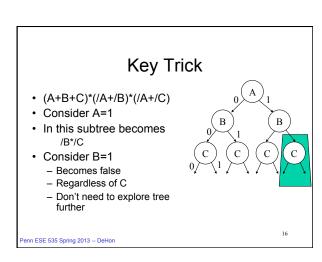
- · Think of as search tree on variables
- · Each variable can be true or false
 - Branch on values
- All variables determined at leaves of tree

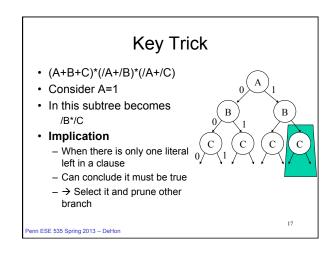

Penn ESE 535 Spring 2013 - DeHon

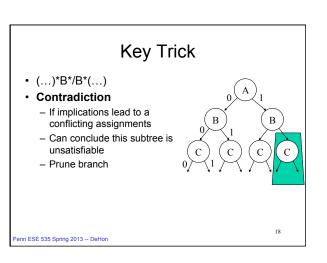

11

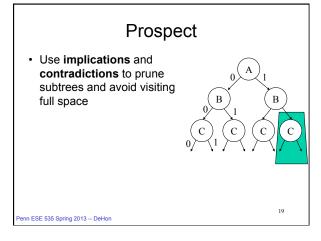

Key Trick

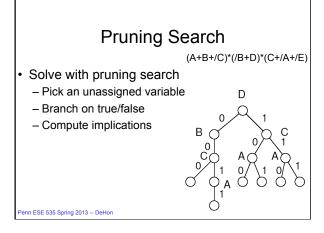

- · Avoid searching down to leaf on all subtrees
- "Prune" away branches of tree

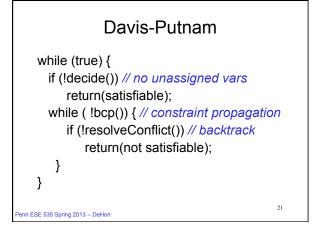


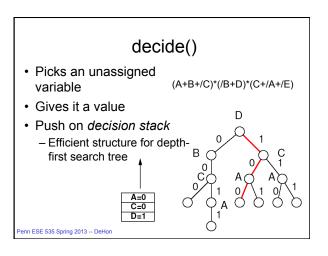

Penn ESE 535 Spring 2013 -- DeHon

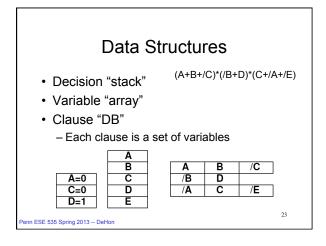












bcp (boolean constraint propagation) • What do we need to do on each variable assignment? - Find implications • Implication when all other literals in a clause are false • Look through all clauses this assignment effects • See if any now have all false and one unassigned - Assign implied values - Propagate that assignment - Conflict if get implications for true and false

bcp()

- Q=new queue();
- · Q.insert(top of decision stack);
- while (!Q.empty())
 - V=Q.pop();
 - For each clause C in DB with V
 - If C now satisfied, mark as such (remove from DB)
 - · If C has one unassigned literal, rest false
 - Vnew=unassigned literal in C
 - val=value Vnew must take
 - If (Vnew assigned to value other than val)
 - » return (false); // conflict
- Q.add(Vnew=val);return(true)

Penn ESE 535 Spring 2013 - DeHon

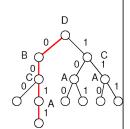
25

Variable Array

• Each variable has a list pointing to all clauses in which it appears?

- Avoid need to look at every clause

(A+B+/C)*(/B+D)*(C+/A+/E)


enn ESE 535 Spring 2013 -- DeHon

Tracking Implications

(A+B+/C)*(/B+D)*(C+/A+/E)

- Each implication made at some tree level
 - Associated with some entry on decision stack
 - Has associated decision stack height
- On backtrack
 - Unassign implications above changed decision level

Penn ESE 535 Spring 2013 –

Track Variable Assignment

- · Each clause has counter
 - Count number of unassigned literals
 - Decrement when assign false literal
 - Mark clause as satisfied when assign true literal (remove from clause database?)

3	Α	В	/ C
2	/ B	D	
3	/ A	C	/ E

Penn ESE 535 Spring 2013 -- DeHon

Track Variable Assignment

- Each clause has counter
 - Count number of unassigned literals
 - Decrement when assign false literal
 - Mark clause as satisfied when assign true literal (remove from clause database?)

3 A B /C 2 /B D 3 /A C /E

E=1

3	A	B	/C
2	/B	D	
3	/A	C	/E

Penn ESE 535 Spring 2013 - DeHon

Track Variable Assignment

- · Each clause has counter
 - Count number of unassigned literals
 - Decrement when assign false literal
 - Mark clause as satisfied when assign true literal
 - Counter avoids need to check all variable assignments in clause on every assignment
 - Watch for counter decrement 2→1
 - · That's when a literal is implied.

3 A B /C 2 /B D 2 /3 /A C /E

Penn ESE 535 Spring 2013 -- DeHon

resolveConflict()

- · What does resolveConflict need to do?
 - Look at most recent decision
 - If can go other way, switch value
 - · (clear implications to this depth)
 - Else pop and recurse on previous decision
 - If pop top decision,
 - Unsatisfiable
- Alternates:
 - Treat literals separately
 - · Unassign and pick another literal
 - Learning (later in lecture)
 - · May allow more direct backtracking

Penn ESE 535 Spring 2013 - DeHon

Chaff Optimizations

Penn ESE 535 Spring 2013 -- DeHon

32

How will this perform?

- 10,000's of variables
- 100,000's of clauses (millions)
- Every assignment walks to the clause database
- · Cache performance?
- How big is L1 cache? L2 cache?
- Ratio of main-memory speed to L1 cache speed?

Penn ESE 535 Spring 2013 - DeHon

33

31

Challenge 1

- Currently, visit every clause on each assignment
 - Clause with K variables
 - Visited K-1 times
 - K-2 of which just to discover it's not the last
- Can we avoid visiting every clause on every assignment?
 - Every clause in which a variable appears?

Penn ESE 535 Spring 2013 -- DeHon

34

Avoiding Clause Visits

- Idea: watch only 2 variables in each clause
- Only care about final set of next to last variable
- If set other k-2, won't force an implication
- When set one of these (and everything else set)
 - Then we have an implication

Penn ESE 535 Spring 2013 - DeHon

35

Avoiding Clause Visits

- Idea: watch only 2 variables in each clause
- Only care about final set of next to last variable
- What if we set one of these two "watched" variables?
 - If not last, change the watch to one of the unset variables

Penn ESE 535 Spring 2013 - DeHon

37

Watch 2

- · If watched literal becomes false
 - Check if all non-watched are set
 - · if so, set implication on other watched
 - · else, update watch literal

Penn ESE 535 Spring 2013 -- DeHon

38

Note

- · Watch pair is arbitrary
- Unassigning a variable (during backtrack)
 - Does not require reset of watch set
 - Constant time to "unset" a variable

Penn ESE 535 Spring 2013 - DeHon

Challenge 2: Variable Ordering

- How do we decide() which variable to use next?
 - Want to pick one that facilitates lots of pruning

Penn ESE 535 Spring 2013 -- DeHon

40

Variable Ordering

- Old Ideas:
 - Random
 - (DLIS) Dynamic largest individual sum
 - Used most frequently in unresolved clauses
 - · Potential weakness:
 - Must re-sort with every variable assignment?

41

- ... none clearly superior
 - · DLIS competitive
 - Rand good on CAD benchmarks?

Penn ESE 535 Spring 2013 - DeHon

New: VSIDS

- Variable State Independent Decaying Sum
 - Each literal has a counter
 - When clause added to DB, increment counter for each literal
 - Select unassigned literal with highest count
 - Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2013 -- DeHon

New: VSIDS

- Variable State Independent Decaying Sum
 - Each literal has a counter
 - When clause added to DB, increment counter for each literal
 - · Remove clauses when satisfied?
 - · Reinsert on backtrack
 - Select unassigned literal with highest count
 - Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2013 - DeHon

43

New: VSIDS

- Variable State Independent Decaying Sum
 - Each literal has a counter
 - When clause added to DB, increment counter for each literal
 - Select unassigned literal with highest count
 - Don't need to re-sort each selection
 - · Only re-sort on backtrack
 - · Maybe priority queue insert?
 - Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2013 -- DeHon

VSIDS

- · Goal: satisfy recent conflict clauses
- Decaying sum weights things being added
 - Clauses not conflicting for a while, have values reduced
 - (? Avoid walking through them by increasing weight on new stuff rather than decreasing all old?)
- Impact: order of magnitude speedup

Penn ESE 535 Spring 2013 - DeHon

45

Restarts

- · Periodically restart
 - Clearing the state of all variables
 - · i.e. clear decision stack
 - Leave clauses in clause database
 - ? Keep ordering based on recent costs
 - ? Re-insert clauses must reinsert on restart?
 - State of clause database drives variable ordering
 - Benefit: new variable ordering based on lessons of previous search

Penn ESE 535 Spring 2013 -- DeHon

46

Overall

- Two orders of magnitude benefit on unsatisfiable instances
- One order of magnitude on satisfiable instances

Penn ESE 535 Spring 2013 - DeHon

47

Learning

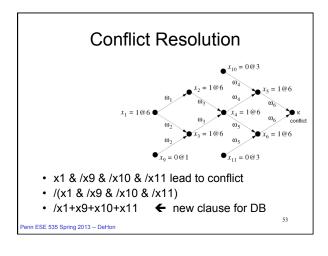
Penn ESE 535 Spring 2013 -- DeHon

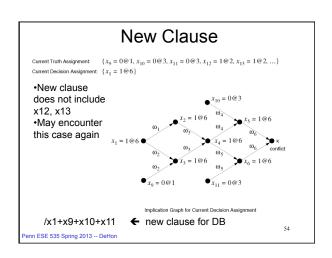
Learning

- · When encounter a conflict
 - Determine variable assignment contributing to conflict
 - Add new clause to database
- · New clause allows pruning

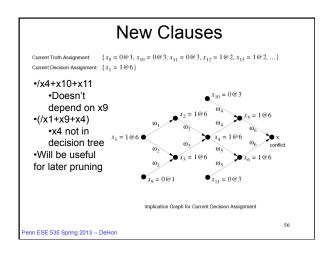
Penn ESE 535 Spring 2013 - DeHon

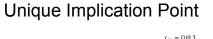
```
Davis-Putnam w/ Learning

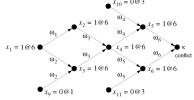

while (true) {
  if (!decide()) // no unassigned vars
    return(satisfiable);
  while ( !bcp()) { // constraint propagation
        analyzeConflicts(); // learning
    if (!resolveConflict()) // backtrack
        return(not satisfiable);
    }
}
```


Implication Graph

- · As perform bcp propagation
 - When set variable, insert back link to previous variable set forcing this variable set
 - Graph captures what this implication depends upon
- When encounter a conflict
 - Identify what variable values caused


51


Penn ESE 535 Spring 2013 - DeHon



More Implications $x_{10} = 0@3$ $x_{11} = 0@3$ $x_{11} = 0@3$ • x4 & /x10 & /x11 lead to conflict • /x4+x10+x11 ← new clause for DB • Also (/x1+x9+x4) since x1*/x9 \Rightarrow x4 Penn ESE 535 Spring 2013 – DeHon

- UIP = vetext that dominates verticies leading to conflict
 - x1 is UIP (decision variable causing is always a UIP)
 - x4 is UIP

Penn ESE 535 Spring 2013 - DeHon

Clause Tradeoff

- Adding clauses facilitates implications
 - Increases pruning
 - Must make less decisions
- Adding clauses increases size of clause database
 - Increases memory
 - Could add exponential clauses
 - Forces more work to push implications

Penn ESE 535 Spring 2013 -- DeHon

58

Learned Clauses

- Runtime = Decisions * ImplicationTime
 - Decisions decreasing
 - Implication Time increasing
- · Starting from 0 learned clauses,
 - Net decrease in runtime
- Eventually, Implication Time too large and slows down
- · Optimum with limited number of learned clauses

Penn ESE 535 Spring 2013 - DeHon

59

Limiting Learned Clauses

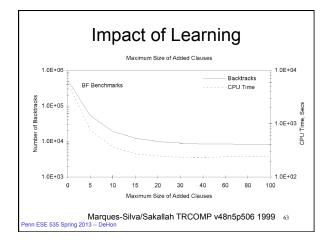
- · Filter out dominated clauses
- · Keep smaller clauses (fewer literals)
 - Have most relevance
- zChaff study suggest inserting only UIP closest to conflict [Zhang et al., ICCAD2001]
- Treat like cache and evict learned clauses
 - Use activity statistics as with variables so keep most useful clauses [minisat 1.2]

Penn ESE 535 Spring 2013 -- DeHon

(Recall) Restarts

- · Periodically restart
 - Clearing the state of all variables
 - i.e. clear decision stack
 - Leave clauses in clause database
 - State of clause database drives variable ordering
 - Benefit: new variable ordering based on lessons of previous search

Penn ESE 535 Spring 2013 - DeHon


61

Impact of Learning

- zChaff [ICCAD2001] showed 2x improvement based on tuning the learning scheme
- Learning can be orders of magnitude benefit

enn ESE 535 Spring 2013 -- DeHon

62

Big Ideas

- Technique: SAT
- Exploit Structure
 - Constraint propagation
 - Pruning search technique
 - Learning (discover structure)
- · Constants matter
 - Exploit hierarchy in modern memory systems

Penn ESE 535 Spring 2013 -- DeHon

64

Admin

- · Assign 5a feedback on Blackboard
- Assign 5b Monday
- · Reading for Monday on Blackboard

Penn ESE 535 Spring 2013 - DeHon