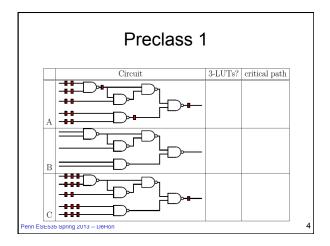
ESE535: Electronic Design Automation

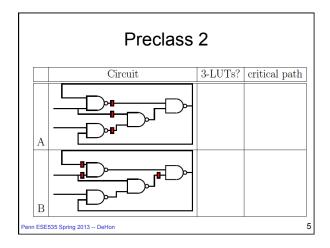
Day 25: April 17, 2013 Covering and Retiming

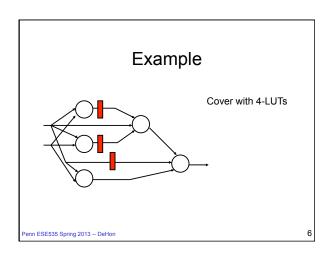
Penn ESE535 Spring 2013 -- DeHon

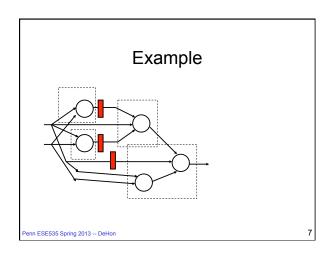
Previously

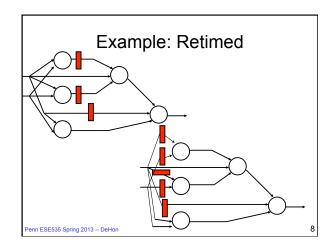
- Cover (map) LUTs for minimum delay

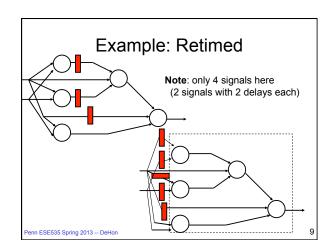

 solve optimally for delay → flowmap
- Retiming for minimum clock period

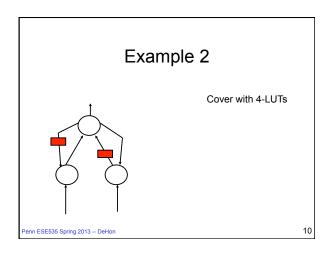

 solve optimally

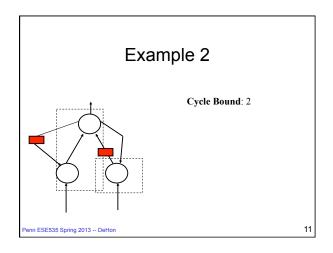

Penn ESE535 Spring 2013 - DeHon

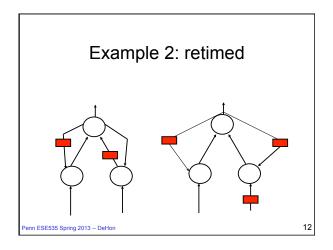

g 2013 – DeHon

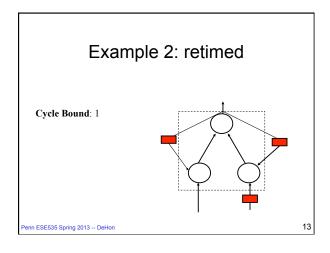

Behavioral (C, MATLAB, ...) Arch. Select Schedule Today RTL FSM assign • Solving cover/retime Two-level, separately **not** optimal Multilevel opt. Covering · Cover+retime Retiming Gate Netlist Placement Routing Layout Masks Penn ESE535 Spring 2013 -- DeHon

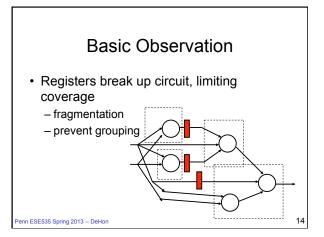




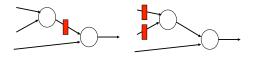








Phase Ordering Problem

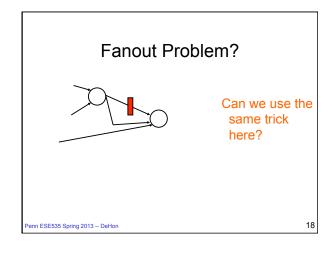

- · General problem
 - don't know effect of other mapping step
 - Have seen this many places
- Here
 - don't know delay if retime first
 - · don't know what can be packed into LUT
 - If we do not retime first
 - fragmentation: forced breaks at bad places

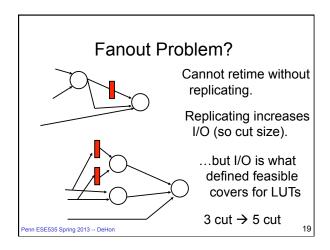
Penn ESE535 Spring 2013 -- DeHon

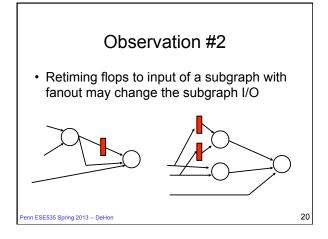
15

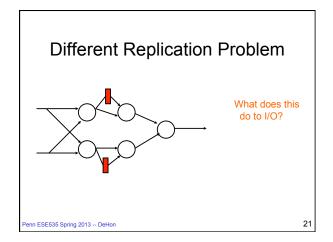
Observation #1

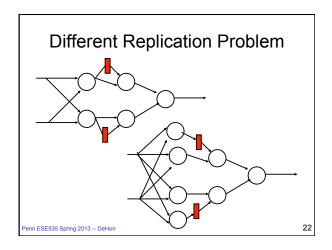
• Retiming flops to input of (fanout free) subgraph is trivial (and always doable)

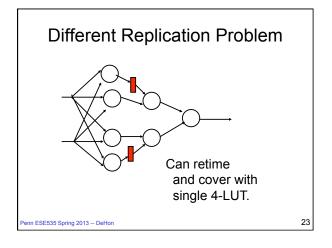

· Does not change I/O into subgraph


nn ESE535 Spring 2013 - DeHon


Observation #1: Consequence


- Can cover ignoring flop placement
- · Then retime flops to input of gates


Penn ESE535 Spring 2013 -- DeHon



Replication

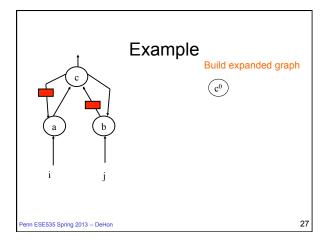
- · Once add registers
 - can't just grab max flow and get replication(compare flowmap)
- Or, can't just ignore flop placement when have reconvergent fanout through flop

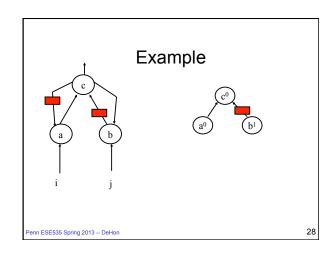
Penn ESE535 Spring 2013 – DeHon

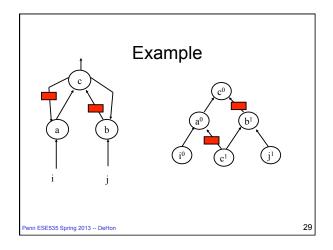
Replication

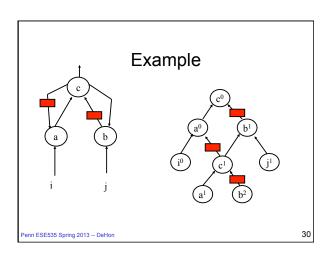
- · Key idea:
 - represent timing paths in graph
 - differentiating based on number of registers in path
 - new graph: all paths from node to output have same number of flip-flops
 - label nodes u^d where d is flip-flops to output

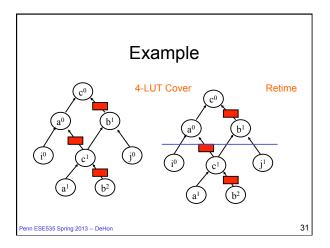
Penn ESE535 Spring 2013 -- DeHon

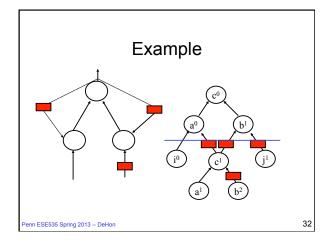

25

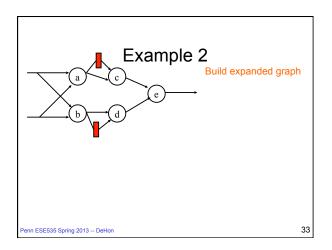

Deal with Replication

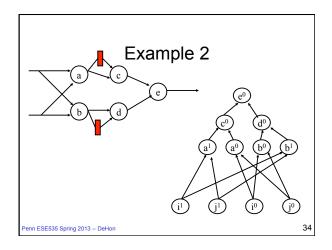

- · Expanded Graph:
 - start with target output node
 - for each input ud to current expanded graph
 - grab its input edge $(x\rightarrow u)$ with weight (w(e))
 - add node $x^{(d+w(e))}$ to graph (if necessary)
 - add edge $x^{(d+w(e))} \rightarrow u^d$ with weight (w(e))
 - continue breadth first until have enough
 - at most k×n node depth required


Penn ESE535 Spring 2013 - DeHon


-







Expanded Graph

- Expanded graph does not have fanout of different flip-flop depths from the *same* node.
 - Captures IO after register retiming
- Can now cover ignoring flip-flops and trivially retime.

Penn ESE535 Spring 2013 -- DeHon

Intuition on Solution

- Phase ordering problem arise form
 - need to capture I/O effects before covering
 - but also need to model delay for register movement
 - But don't know register movement until after covering
- · So, break retime into two pieces
 - 1. Expanded graph (capture I/O)
 - 2. Actual retime (moves registers)
- Do expanded graph piece before cover and register movement after

Penn ESE535 Spring 2013 - DeHon

35

Intuition on Solution

- · Break retime into two pieces
 - 1. Expanded graph (capture I/O)
 - 2. Actual retime (moves registers)
- Do expanded graph piece before cover and register movement after
- Not quite that simple since how much of expanded graph need depends on covering
 - So really doing just-in-time expansion in the middle of covering...
 - · Before each cover/cut computation

Penn ESE535 Spring 2013 -- DeHon

37

Labeling

- Key idea #1:
 - compute distances/delay like flowmap
 - · Try collapse and compute flow cut
 - Dynamic programming to compute min delay covers
- Kev idea #2:
 - count distance from register
 - · like G-1/c graph

Penn ESE535 Spring 2013 - DeHon

38

Labeling: Edge Weights

- · To target clock period c
 - use graph G-1/c
 - paper:
 - assign weight -c*w(e)+1
 - (same thing scaled by c and negated)

Penn ESE535 Spring 2013 -- DeHon

3

Labeling: Edge Weight Idea

- · same idea:
 - will need register ever c LUT delays
 - credit with registers as encounter
 - charge a fraction (1/c) every LUT delay
 - know net distance at each point
 - if negative (delays > c*registers)
 - · cannot distribute to achieve c
 - otherwise
 - · labeling tells where to distribute

Penn ESE535 Spring 2013 -- DeHon

40

Labeling: Flow cut

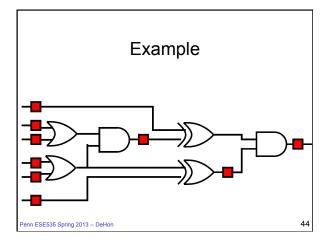
- Label node as before (flowmap)
 - $-L(v)=min\{l(u)+d|\exists u\rightarrow v\}$
 - trivially can be L(v)-1/c == new LUT
 - Correspond to flowmap case: L(v)+1
 - note min vs. max and -1/c vs. +1 due to rescaling to match retiming formulation and G-1/ c graph
 - in this formulation, a combinational circuit of depth 4 would have L(v)=-4/c
 - if can put this and all L(v)'s in one LUT
 - this can be L(v)

• construct and compute flow cut to test
Penn ESE535 Spring 2013 -- DeHon

41

LUT Map and Retime

- · Start with outputs
- · Cover with LUT based on cut
 - move flip-flops to inputs of LUT
 - · don't have meaningful labels for covered nodes
 - Know can do this by expanded graph construction
- · Recursively cover inputs
- Use label to retime


r(v)=[I(v)]-1

Penn ESE535 Spring 2013 - DeHon

Target Clock Period c

- As before (retiming)
 - binary search to find optimal c

Penn ESE535 Spring 2013 -- DeHon

Summary

- · Can optimally solve
 - LUT map for delay
 - retiming for minimum clock period
- But, solving separately does not give optimal solution to problem
- Can solve problems together
 - Account for registers on paths
 - Label based on register placement and (flow) cover ignoring registers
 - Labeling gives delay, covering, retiming

enn ESE535 Spring 2013 -- DeHon

Today's Big Ideas

- Exploit freedom
- · Cost of decomposition
 - benefit of composite solution
- Technique:
 - dynamic programming
 - network flow

Penn ESE535 Spring 2013 - DeHon

46

Admin

- · Monday reading online
- HW7 final due Monday

Penn ESE535 Spring 2013 -- DeHon