
1

Penn ESE 535 Spring 2013 -- DeHon
1

ESE535:
Electronic Design Automation

Day 26: April 22, 2013
Processor Verification

Penn ESE 535 Spring 2013 -- DeHon
2

Can we pipeline?

Penn ESE 535 Spring 2013 -- DeHon
3

Penn ESE 535 Spring 2013 -- DeHon
4

Pipelining: ALU-RF Path
•  Only a problem

when next
instruction depends
on value written by
immediately
previous instruction

•  ADD R3R1+R2
•  ADD R4R2+R4
•  ADD R5R4+R3

Penn ESE 535 Spring 2013 -- DeHon
5

ALU-RF Path

•  Only a problem
when next
instruction depends
on value written by
immediately
previous instruction

•  Solve with Bypass

Penn ESE 535 Spring 2013 -- DeHon
6

ALU-RF Path

•  Only a problem
when next
instruction depends
on value written by
immediately
previous instruction

•  Solve with Bypass

2

Penn ESE 535 Spring 2013 -- DeHon
7

Branch Path

•  Only a problem
when the instruction
is a taken branch

Penn ESE 535 Spring 2013 -- DeHon
8

Branch Path
•  Only a problem

when the instruction
is a taken branch

•  Solve by
–  Speculating is not a

taken branch
–  Preventing the

speculative
instruction from
affecting state when
branch occurs

Penn ESE 535 Spring 2013 -- DeHon
9

Penn ESE 535 Spring 2013 -- DeHon
10

Example
•  Different implementations for same

specification

Penn ESE 535 Spring 2013 -- DeHon
11

Today

•  Specification/Implementation
•  Abstraction Functions
•  Correctness Condition
•  Verification
•  Self-Consistency

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE 535 Spring 2013 -- DeHon
12

Specification

•  Abstract from Implementation
•  Describes observable/correct behavior

3

Penn ESE 535 Spring 2013 -- DeHon
13

Implementation

•  Some particular embodiment
•  Should have same observable behavior

– Same with respect to important behavior
•  Includes many more details than spec.

– How performed
– Auxiliary/intermediate state

Unimportant Behavior?

•  What behaviors might be unimportant?

Penn ESE 535 Spring 2013 -- DeHon
14

Penn ESE 535 Spring 2013 -- DeHon
15

“Important” Behavior

•  Same output sequence for input
sequence
– Same output after some time?

•  Timing?
– Number of clock cycles to/between results?
– Timing w/in bounds?

•  Ordering?

Penn ESE 535 Spring 2013 -- DeHon
16

Abstraction Function

•  Map from implementation state to
specification state
– Use to reason about implementation

correctness
– Want to guarantee: AF(Fi(q,i))=Fs(AF(q),i)

•  Similar to saying the composite state machines
always agree on output (state)

– …but have more general notion of outputs
and timing

AF

AF

Fs Fi

Penn ESE 535 Spring 2013 -- DeHon
17

Recall FSM

•  Equivalent FSMs with different number
of states

s3 s4

s0

s1 s2

0/0 q0

q1 q2

1/0

0/1

0/0

0/0 1/0
0/1

1/0

1/1 1/1

0/0 1/0

1/1 0/1

1/0 0/0

Penn ESE 535 Spring 2013 -- DeHon
18

Recall FSM

•  Maybe right is specification
•  AF(s1)=q1, AF(s3)=q1
•  AF(s2)=q2, AF(s4)=q2
•  AF(s0)=q0

s3 s4

s0

s1 s2

0/0 q0

q1 q2

1/0

0/1

0/0

0/0 1/0
0/1

1/0

1/1 1/1

0/0 1/0

1/1 0/1

1/0 0/0

AF

AF

Fs Fi

4

Penn ESE 535 Spring 2013 -- DeHon
19

Familiar Example

•  Memory Systems
– Specification:

•  W(A,D)
•  R(A)D from last D written to this address

– Specification state: contents of memory
–  Implementation:

•  Multiple caches, VM, pipelined, Write Buffers…

–  Implementation state: much richer…

Penn ESE 535 Spring 2013 -- DeHon
20

Memory AF

•  Maps from
– State of caches/WB/etc.

•  To
– Abstract state of memory

•  Guarantee AF(Fi(q,I))==Fs(AF(q),I)
– Guarantee change to state always

represents the correct thing

Memory: L1, writeback
•  Memory with L1 cache

– L1 cache is extra state
•  Another L1.capacity words of data

– Check L1 cache first for data on read
– Missload into cache
– Writes update mapping for address in L1
– When address evicted form L1

•  write-back to main memory

Penn ESE 535 Spring 2013 -- DeHon
21

Memory: L1, writeback
•  Specification State:

– one memory with addr:data mappings
– M(a) = MM[a]

•  L1 writeback cache implementation
– AF(L1+M): forall a

•  If a in L1
•  M(a)=L1[a]
•  else
•  M(a)=MM[a]

Penn ESE 535 Spring 2013 -- DeHon
22

AF

AF

Fs Fi

Memory: L1, writeback
•  Specification State:

– one memory with addr:data mappings
– M(a) = MM[a]

•  What are several (different)
implementation states that map to same
specification state?
– Concrete: M(0x100C)=0xBEC1

Penn ESE 535 Spring 2013 -- DeHon
23

AF

AF

Fs Fi

Penn ESE 535 Spring 2013 -- DeHon
24

Abstract Timing

•  For computer memory system
– Cycle-by-cycle timing not part of

specification
– Must abstract out

•  Solution:
– Way of saying “no response”

•  Saying “skip this cycle”
•  Marking data presence

– (tagged data presence pattern)
•  Example: stall while fetch data into L1 cache

5

Penn ESE 535 Spring 2013 -- DeHon
25

Filter to Abstract Timing

•  Filter input/output sequence
•  View computation as: Os(in)out
•  FilterStall(Implin) = in
•  FilterStall(Implout) = out
•  Forall sequences Implin

– FilterStall(Oi(Implin)) = Os(FilterStall(Implin))

Penn ESE 535 Spring 2013 -- DeHon
26

DLX Datapath

DLX unpipelined datapath from H&P (Fig. 3.1 e2, A.17 e3)

Penn ESE 535 Spring 2013 -- DeHon
27

Processors

•  Pipeline is big difference between
specification state and implementation
state.

•  What is specification state?

Penn ESE 535 Spring 2013 -- DeHon
28

Revised Pipeline

DLX repipelined datapath from H&P (Fig. 3.22 e2, A.24 e3)

Penn ESE 535 Spring 2013 -- DeHon
29

Processors

•  Pipeline is big difference between
specification state and implementation state.

•  Specification State:
–  PC, RF, Data Memory

•  Implementation State:
+  Instruction in pipeline
+  Lots of bits

  Many more states
  State-space explosion to track

Penn ESE 535 Spring 2013 -- DeHon
30

Compare

6

Return to L1, writeback

•  How does main memory state relate to
specification state after an L1 cache
flush?
– L1 cache flush = force writeback on all

entries of L1

Penn ESE 535 Spring 2013 -- DeHon
31

Penn ESE 535 Spring 2013 -- DeHon
32

Compare

How make
the shared
state the
same?

Penn ESE 535 Spring 2013 -- DeHon
33

Observation

•  After flushing pipeline,
– Reduce implementation state to

specification state (RF, PC, Data Mem)
•  Can flush pipeline with series of NOOPs

or stall cycles

Penn ESE 535 Spring 2013 -- DeHon
34

Pipelined Processor
Correctness

•  w = input sequence
•  wf = flush sequence

–  Enough NOOPs to flush pipeline state
•  Forall states q and prefix w

–  Fi(q,w wf)Fs(q,w wf)
–  Fi(q,w wf)Fs(q,w)

•  FSM observation
–  Finite state in pipeline
–  only need to consider finite w

Penn ESE 535 Spring 2013 -- DeHon
35

Pipeline Correspondence

[Burch+Dill, CAV’94]

Penn ESE 535 Spring 2013 -- DeHon
36

Equivalence

•  Now have a logical condition for
equivalence

•  Need to show that it always holds
–  Is a Tautology

•  Or find a counter example

7

Penn ESE 535 Spring 2013 -- DeHon
37

Ideas

•  Extract Transition Function
•  Segregate datapath
•  Symbolic simulation on variables

– For q, w’s
•  Case splitting search

– Generalization of SAT
– Uses implication pruning

Penn ESE 535 Spring 2013 -- DeHon
38

Extract Transition Function

•  From HDL
•  Similar to what we saw for FSMs

Penn ESE 535 Spring 2013 -- DeHon
39

Segregate Datapath

•  Big state blowup is in size of datapath
– Represent data symbolically/abstractly

•  Independent of bitwidth
– Not verify datapath/ALU functions as part

of this
•  Can verify ALU logic separately using

combinational verification techniques
•  Abstract/uninterpreted functions for datapath

Penn ESE 535 Spring 2013 -- DeHon
40

Burch&Dill Logic

•  Quantifier-free
•  Uninterpreted functions (datapath)
•  Predicates with

– Equality
– Propositional connectives

Penn ESE 535 Spring 2013 -- DeHon
41

B&D Logic

•  Formula = ite(formula, formula, formula)
⏐ (term=term)
⏐ psym(term,…term)
⏐ pvar | true | false

•  Term = ite(formula,term,term)
⏐ fsym(term,…term)
⏐ tvar

Penn ESE 535 Spring 2013 -- DeHon
42

Sample

•  Regfile:
–  (ite stall
 regfile
 (write regfile
 dest
 (alu op
 (read regfile src1)
 (read regfile src2))))

8

Penn ESE 535 Spring 2013 -- DeHon
43

Sample Pipeline

Penn ESE 535 Spring 2013 -- DeHon
44

Example Logic

•  arg1:
–  (ite (or bubble-ex
 (not (= src1 dest-ex)))
 (read
 (ite bubble-wb
 regfile
 (write regfile dest-wb result))
 src1)
 (alu op-ex arg1 arg2))

Penn ESE 535 Spring 2013 -- DeHon
45

Symbolic Simulation

•  Create logical expressions for outputs/
state
– Taking initial state/inputs as variables

•  E.g. (ALU op2
 (ALU op1 rf-init1 rf-init2)
 rf-init3)

Example

•  ADD R3R1+R2
•  ADD R4R2+R4
•  ADD R5R4+R3

After
•  R1: rf-init1
•  R2: rf-init2
•  R3: (ALU add rf-init1 rf-

init2)
•  R4: (ALU add rf-init2 rf-

init4)
•  R5: (ALU add (ALU add

rf-init2 rf-init4) (ALU add
rf-init1 rf-init2))

Penn ESE 535 Spring 2013 -- DeHon
46 This is what checking equivalence on.

Penn ESE 535 Spring 2013 -- DeHon
47

Case Splitting Search

•  Satisfiability Problem
•  Pick an unresolved variable

–  (= src1 dest-ex)
•  [relevant to bypass]

–  (= 0
 (ALU op2
 (ALU op1 rf-init1 rf-init2)
 rf-init3)
)
•  [relevant to branching]

Case Splitting

•  Some case-splitting will be
– Ops – explore all combination of op

sequences
– Registers – all interactions of registers

among ops (ops in pipeline)
– Stalls – all possible timing of stalls

•  Like picking all output conditions from a
state
– Case-splitting – picking cube cases

Penn ESE 535 Spring 2013 -- DeHon
48

9

Penn ESE 535 Spring 2013 -- DeHon
49

Case Splitting Search

•  Satisfiability Problem
•  Pick an unresolved variable
•  Branch on true and false
•  Push implications
•  Bottom out at consistent specification
•  Exit on contradiction
•  Pragmatic: use memoization to reuse

work
Penn ESE 535 Spring 2013 -- DeHon

50

Review: What have we done?

•  Reduced to simpler problem
– Simple, clean specification

•  Abstract Simulation
– Explore all possible instruction sequences

•  Abstracted the simulation
– Focus on control
– Divide and Conquer: control vs. arithmetic

•  Used Satisfiability for reachability in
search in abstract simulation

Penn ESE 535 Spring 2013 -- DeHon
51

Achievable

•  Burch&Dill: Verify 5-stage pipeline DLX
– 1 minute in 1994

•  On a 40MHz R3400 processor

•  Modern machines 30+ pipeline stages
– …and many other implementation

embellishments

Penn ESE 535 Spring 2013 -- DeHon
52

Self Consistency

Penn ESE 535 Spring 2013 -- DeHon
53

Self-Consistency

•  Compare same implementation in two
different modes of operation
–  (which should not affect result)

•  Examples of different modes of
operation that should behave the
same?

Penn ESE 535 Spring 2013 -- DeHon
54

Self-Consistency

•  Compare same implementation in two
different modes of operation
–  (which should not affect result)

•  Compare pipelined processor
– To self w/ NOOPs separating instructions

•  So only one instruction in pipeline at a time
– Why might this be important?

10

Penn ESE 535 Spring 2013 -- DeHon
55

Self-Consistency

•  w = instruction sequence
•  S(w) = w with no-ops
•  Show: Forall q, w

– F(q,w) = F(q,S(w))

Penn ESE 535 Spring 2013 -- DeHon
56

Sample Result

•  A – stream processor
•  B – multithread pipeline

[Jones, Seger, Dill/FMCAD 1996]
 n.b. Jones&Seger at Intel

Penn ESE 535 Spring 2013 -- DeHon
57

Sample Result: OoO processor

[Skakkebæk, Jones, and Dill / CAV 1998,
 Formal Methods in System Design v20, p139, 2002]

Verification running on P2-200MHz

Penn ESE 535 Spring 2013 -- DeHon
58

Key Idea Summary

•  Implementation state reduces to
Specification state after finite series of
operations

•  Abstract datapath to avoid dependence
on bitwidth

•  Abstract simulation (reachability)
– Show same outputs for any input sequence

•  Statestate transform
– Can reason about finite sequence of steps

Penn ESE 535 Spring 2013 -- DeHon
59

Big Ideas

•  Proving Invariants
•  Divide and Conquer
•  Exploit Structure

Penn ESE 535 Spring 2013 -- DeHon
60

Admin
•  Last Class
•  Assignment 8 out

– due May 7th (noon)
– Late assignments will not receive partial credit
– André traveling April 28—May1, May 6-7

•  Ask clarifying questions before May 6

•  Mostly normal office hours Tuesday
(tomorrow) – must leave at 5:45pm
– None on April 30th

•  Course evaluations online

