ESES535:
Electronic Design Automation

Day 6: January 30, 2013
Partitioning
(Intro, KLFM)

#&Penn

Penn ESE535 Spring 2013 -- DeHon

Behavioral
(C, MATLAB, ...)
I Arch. Select
Tod ay ¥ Schedule
RTL
iy . FSM assign
* Partitioning N
— Why important Multilevel opt.
Covering
» Can be used as tool Reifimiing
at many levels Gate Netlist
— practical attack | Placement
L . 1 Routing
— variations and issues
Layout
Masks
3
Penn ESE535 Spring 2013 -- DeHon
Behavioral

(C, MATLAB, ...)

1 Arch. Select
Schedule

Motivation (2)

+ Cut size (bandwidth) can determineRTL

FSM assign
— Area, energy Two-level,
s Multilevel opt.
. M|n|m|Z|ng cuts Covering
— minimize interconnect requirements Retiming
— increases signal locality Gate Neﬂ‘“
. . . ace.mem
* Chip (board) partitioning l Routing
— minimize 10 Layout
« Direct basis for placement
Masks

Penn ESE535 Spring 2013 -- DeHon

Preclass Warmup

* What cut size were
you able to achieve?

©

X y
Penn ESE535 Spring 2013 -- DeHon

Motivation (1)

» Divide-and-conquer
— trivial case: decomposition
— smaller problems easier to solve
« net win, if super linear
« Part(n) + 2xT(n/2) < T(n)
— problems with sparse connections or
interactions
— Exploit structure
« limited cutsize is a common structural property

« random graphs would not have as small cuts
4
Penn ESE535 Spring 2013 -- DeHon

Bisection Width

+ Partition design into two equal size halves
— Minimize wires (nets) with ends in both halves

* Number of wires crossing is bisection
width

* lower bw = more locality

@ ¢ (b é (:) (!) C!) M cutsize

Penn ESE535 Spring 2013 -- uei un

Interconnect Area

« Bisection width is
lower-bound on IC
width
— When wire

dominated, may be
tight bound

 (recursively)

metal wires
crossing
middle of chip

Penn ESE535 Spring 2013 -- DeHon

(r/N)ma

Balanced Partitioning

» NP-complete for general graphs

—[ND17: Minimum Cut into Bounded Sets,
Garey and Johnson]

— Reduce SIMPLE MAX CUT

— Reduce MAXIMUM 2-SAT to SMC

— Unbalanced partitioning poly time
* Many heuristics/attacks

Penn ESE535 Spring 2013 -- DeHon

Fiduccia-Mattheyses

(Kernighan-Lin refinement)
« Start with two halves (random split?)
* Repeat until no updates
— Start with all cells free

— Repeat until no cells free
* Move cell with largest gain (balance allows)
» Update costs of neighbors
* Lock cell in place (record current cost)
— Pick least cost point in previous sequence and
use as next starting position

» Repeat for different random starting points

Penn ESE535 Spring 2013 -- DeHon

Classic Partitioning Problem

¢ Given: netlist of interconnect cells

« Partition into two (roughly) equal halves
(A,B)

* minimize the number of nets shared by
halves

* “Roughly Equal”
— balance condition: (0.5-3)N=<|A|<(0.5+5)N

Penn ESE535 Spring 2013 -- DeHon

KL FM Partitioning Heuristic

* Greedy, iterative
— pick cell that decreases cut and move it
—repeat

» small amount of non-greediness:

—look past moves that make locally worse
—randomization

Penn ESE535 Spring 2013 -- DeHon

Efficiency

Tricks to make efficient:
+ Expend little work picking move candidate
— Constant work = O(1)
— Means amount of work not dependent on problem
size
» Update costs on move cheaply [O(1)]
« Efficient data structure
— update costs cheap
— cheap to find next move

Penn ESE535 Spring 2013 -- DeHon

Ordering and Cheap Update

» Keep track of Net gain on node == delta
net crossings to move a node
= cut cost after move = cost - gain

» Calculate node gain as X net gains for
all nets at that node
— Each node involved in several nets

» Sort nodes by gain A\.‘L

—Avoid full resort every move -~
B

13
Penn ESE535 Spring 2013 -- DeHon

FM Cell Gains

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node

I
R

Penn ESE535 Spring 2013 -- DeHon

After move node?

» Update cost
— Newcost=cost-gain

» Also need to update gains
—on all nets attached to moved node
— but moves are nodes, so push to
« all nodes affected by those nets

Penn ESE535 Spring 2013 -- DeHon

Composability of Net Gains

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

» For each net, keep track of number of cells in
each partition [F(net), T(net)]
» Move update:(for each net on moved cell)

— if T(net)==0, increment gain on F side of net
« (think -1 => 0)

plelek

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

* For each net, keep track of number of cells in
each partition [F(net), T(net)]
» Move update:(for each net on moved cell)

— if T(net)==0, increment gain on F side of net
« (think -1 => 0)

— if T(net)==1, decrement gain on T side of net
* (think 1=>0)

Fu2 Tt

ijé

Sl

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

» Move update:(for each net on moved cell)
— if T(net)==0, increment gain on F side of net
— if T(net)==1, decrement gain on T side of net
— decrement F(net), increment T(net)

=" 2Ll
3] TETO"E

U

Fz T Fz

. F%-»
R

EINE:

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

* Move update:(for each net on moved cell)
— if T(net)==0, increment gain on F side of net
— if T(net)==1, decrement gain on T side of net
— decrement F(net), increment T(net)
— if F(net)==1, increment gain on F cell
— if F(net)==0, decrement gain on all cells (T)

n
s
-
]

F=0 T=3

ElElE
¥

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain
* Move update:(for each net on moved cell)
— if T(net)==0, increment gain on F side of net
— if T(net)==1, decrement gain on T side of net
— decrement F(net), increment T(net)
— if F(net)==1, increment gain on F cell

F=2 T=1

iﬂﬁﬁ;@‘éﬂg‘

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

» For each net, keep track of number of cells in
each partition [F(net), T(net)]
» Move update:(for each net on moved cell)
— if T(net)==0, increment gain on F side of net
« (think -1 => 0)
— if T(net)==1, decrement gain on T side of net
« (think 1=>0)
— decrement F(net), increment T(net)
— if F(net)==1, increment gain on F cell
— if F(net)==0, decrement gain on all cells (T)

Penn ESE535 Spring 2013 -- DeHon

F
O O
0

Recompute (example)

Q—

M
0
0
O

[O O
[O O O
ngiigiigliglin
ngliigiigliy
ngiizlin
ngliin

[note markings here
are deltas...earlier
pix were absolutes]

Penn ESE535 Spring 2013 -- DeHon

FM Recompute (example)

0
ulla
O

L
EH
]

+

[O O B
ks

ngiigiigliy

[O O

[note markings here
are deltas...earlier
pix were absolutes]

Penn ESE535 Spring 2013 -- DeHon

1+ O O O
ngiigiin
npiin

F

<

Recompute (example)

[
Eh EH

[BH EH
[O BH EH

[OH
ngligliy

H
s
npfigiipliiy
ngiiglin
npiin
-

[note markings here
are deltas...earlier
pix were absolutes]

Penn ESE535 Spring 2013 -- DeHon

F

<

Recompute (example)

[
Eh EH
EH EH

[B BH EH

R
npiiglinlSy
ngiiglin
npiin
-

[
1+ OH

[note markings here
are deltas...earlier
pix were absolutes]

Penn ESE535 Spring 2013 -- DeHon

F

<

Recompute (example)

]
FH B
B EH EH
Eh BH BH EH
H i
G BT
1+ O B B
1+ O B
nglin
[

[note markings here
are deltas...earlier
pix were absolutes]

Penn ESE535 Spring 2013 -- DeHon

w
N

F

<

Recompute (example)

]

FH B

B EH EH
Eh BH BH EH

[+ EH B
0 EF

[+

[

[note markings here
are deltas...earlier
pix were absolutes]

N
2

Penn ESE535 Spring 2013 -- DeHon

FM Data Structures

« Partition Counts A,B

+ Two gain arrays * Cells
— One per partition — successors
— Key: constant time (consumers)
cell update — inputs
+max — locked status

[Cel TITT]cel I Cel 1]

Binned by cost = constant time update

—max| 29
Penn ESE535 Spring 2013 -- DeHon

Use FM to Partition Preclass
Example

* Allow partition of
size 5

X y
Penn ESE535 Spring 2013 -- DeHon

FM imization n X : :
Optimization Sequence (ex) FM Running Time?

+3 +2 T_ . .

+; _+D_1 } * Randomly partition into two halves

+ B

+2] [-1] |o * Repeat until no updates

SIS — Start with all cells free

|- | — Repeat until no cells free

ol |2| |2 ; ;

0 2l |2 * Move cell with largest gain

-1 -1 -2 * Update costs of neighbors

+11 E% ; » Lock cell in place (record current cost)

ol |2 | g — Pick least cost point in previous sequence and

20 -3 |3 use as next starting position

3] |3 |3 . : :

NI . * Repeat for different random starting pointg
Penn ESE535 Spring 2013 - DeHon +12 +3 [1] i Penn ESE535 Spring 2013 - DeHon N

FM Running Time FM Starts?

3000

+ Assume:
— constant number of passes to converge
— constant number of random starts
« N cell updates each round (swap) So, FM gives
» Updates K + fanout work (avg. fanout K) a not bad
— assume at most K inputs to each node .
— For every net attached (K+1) solution
« For every node attached to those nets (O(K)) 1900 QUICk|y
» Maintain ordered list O(1) per move
— every io move up/down by 1
 Running time: O(K2N)
— Algorithm significant for its speed
* (more than quality)

[
100.0 200.0 3000 4000 500.0 6000

Solution cost

N 21K random starts, 3K network -- Alpert/Kahng ,,
Penn ESE535 Spring 2013 -- DeHon N Penn ESE535 Spring 2013 -- DeHon ’
Weaknesses? | Improving FM
|
* Local, incremental moves onl .
y : * Clustering
—hard to move clusters Initial partitions
—no lookahead P
* Runs

— Stuck in local minima?
¢ Partition size freedom

* Looks only at local structure

Following comparisons from Hauck and Boriello ‘96
35 36
Penn ESE535 Spring 2013 -- DeHon Penn ESE535 Spring 2013 -- DeHon

Clustering

* Group together several leaf cells into
cluster

* Run partition on clusters
Uncluster (keep partitions)
— iteratively
* Run partition again
— using prior result as starting point
« instead of random start

Penn ESE535 Spring 2013 -- DeHon

How Cluster?

* Random
— cheap, some benefits for speed
* Greedy “connectivity”
— examine in random order
— cluster to most highly connected
— 30% better cut, 16% faster than random
+ Spectral (next week)
— look for clusters in placement
— (ratio-cut like)
* Brute-force connectivity (can be O(N?2))

39

Penn ESE535 Spring 2013 -- DeHon

Clustering Benefits

» Catch local connectivity which FM might
miss
— moving one element at a time, hard to see
move whole connected groups across
partition
» Faster (smaller N)

— METIS -- fastest research partitioner
exploits heavily

Penn ESE535 Spring 2013 -- DeHon

Initial Partitions?

* Random

» Pick Random node for one side
— start imbalanced
—run FM from there

* Pick random node and Breadth-first
search to fill one half

» Pick random node and Depth-first
search to fill half

« Start with Spectral partition

Penn ESE535 Spring 2013 -- DeHon

40

Initial Partitions

* If run several times
— pure random tends to win out

— more freedom / variety of starts
— more variation from run to run
— others trapped in local minima

41
Penn ESE535 Spring 2013 -- DeHon

Number of Runs

250

225

200
é 175 Basic KLFL
E

glﬂﬂ M Optimized KLF.

75 “++

0 500 1000 1500 2000 2500

42
Penn ESE535 Spring 2013 -- DeHon

Number of Runs

.« 2-10%

. 10-18%
- 20 <20%

. 50 < 22%
e ...but?

00
100.0 200.0 3000 4000 500.0 6000

21K random starts, 3K network ,
Alpert/Kahng

3
Penn ESE535 Spring 2013 -- DeHon

Unbalanced Cuts

* Increasing slack in partitions
— may allow lower cut size

Penn ESE535 Spring 2013 -- De.

Unbalanced Partitions

%0 90
80 80

K E

] &
260 260
o o

50 1 [—o—Shared 50

=== 1% Max f:';;aeram
@1 |— w1
Separte ——Smal
30 4 30 4
05 055 06 065 07 075 05 055 06 085 07 075

Maximum Partition §i Maximum Partition Si
Small/large is benchmark size not small/large partition 0.
Following comparisons from Hauck and Boriello ‘96
45

Penn ESE535 Spring 2013 -- DeHon

Partitioning Summary

* Decompose problem

* Find locality

* NP-complete problem
* linear heuristic (KLFM)

* many ways to tweak
— Hauck/Boriello, Karypis

Penn ESE535 Spring 2013 -- DeHon

46

Today’s Big Ideas:

* Divide-and-Conquer
» Exploit Structure
— Look for sparsity/locality of interaction
» Techniques:
— greedy
—incremental improvement
— randomness avoid bad cases, local minima
—incremental cost updates (time cost)
— efficient data structures

47

Penn ESE535 Spring 2013 -- DeHon

Admin

* Reading for Monday online
» Assignment 2A due on Monday

Penn ESE535 Spring 2013 -- DeHon

48

