

Motivation (1)

- Divide-and-conquer
- trivial case: decomposition
- smaller problems easier to solve
- net win, if super linear
- Part(n) $+2 \times T(n / 2)<T(n)$
- problems with sparse connections or interactions
- Exploit structure
- limited cutsize is a common structural property
- random graphs would not have as small cuts

Bisection Width

- Partition design into two equal size halves
- Minimize wires (nets) with ends in both halves
- Number of wires crossing is bisection width
- lower bw = more locality

Balanced Partitioning

- NP-complete for general graphs
- [ND17: Minimum Cut into Bounded Sets, Garey and Johnson]
- Reduce SIMPLE MAX CUT
- Reduce MAXIMUM 2-SAT to SMC
- Unbalanced partitioning poly time
- Many heuristics/attacks

Penn ESE535 Spring 2013 -- DeHon

Fiduccia-Mattheyses (Kernighan-Lin refinement)

- Start with two halves (random split?)
- Repeat until no updates
- Start with all cells free
- Repeat until no cells free
- Move cell with largest gain (balance allows)
- Update costs of neighbors
- Lock cell in place (record current cost)
- Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points Penn ESE535 Spring 2013 - DeHon

Classic Partitioning Problem

- Given: netlist of interconnect cells
- Partition into two (roughly) equal halves (A,B)
- minimize the number of nets shared by halves
- "Roughly Equal"
- balance condition: $(0.5-\delta) \mathrm{N} \leq|\mathrm{A}| \leq(0.5+\delta) \mathrm{N}$

KL FM Partitioning Heuristic

- Greedy, iterative
- pick cell that decreases cut and move it
- repeat
- small amount of non-greediness:
- look past moves that make locally worse
- randomization
Efficiency
Tricks to make efficient:
• Expend little work picking move candidate
\quad - Constant work = O(1)
\quad - Means amount of work not dependent on problem
\quad size
• Update costs on move cheaply [O(1)]
• \quad Efficient data structure
\quad - update costs cheap
- cheap to find next move
Penn Ese535 spring 2013 -- DeHon

Ordering and Cheap Update

- Keep track of Net gain on node == delta net crossings to move a node
- cut cost after move = cost - gain
- Calculate node gain as Σ net gains for all nets at that node
- Each node involved in several nets
- Sort nodes by gain
- Avoid full resort every move

After move node?

- Update cost
- Newcost=cost-gain
- Also need to update gains
- on all nets attached to moved node
- but moves are nodes, so push to
- all nodes affected by those nets

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition [F(net), T (net)]
- Move update:(for each net on moved cell)
- if $T($ net $)==0$, increment gain on F side of net
-(think -1 $=>0$)

17

FM Cell Gains

Gain $=$ Delta in number of nets crossing between partitions
$=$ Sum of net deltas for nets on the node

Composability of Net Gains

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition [F(net), T (net)]
- Move update:(for each net on moved cell)
- if T (net) $==0$, increment gain on F side of net - (think -1 => 0)
- if T (net)==1, decrement gain on T side of net
- (think $1=>0$)

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

- Move update:(for each net on moved cell)
- if T (net $)==0$, increment gain on F side of net
- if $T($ net $)==1$, decrement gain on T side of net
- decrement F (net), increment T (net)

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

- Move update:(for each net on moved cell)
- if $T($ net $)==0$, increment gain on F side of net
- if T (net) $==1$, decrement gain on T side of net
- decrement F (net), increment T (net)
- if $F($ net $)==1$, increment gain on F cell
- if $F($ net $)==0$, decrement gain on all cells (T)

Penn ESE535 Spring 2013 -- DeHon

FM Recompute Cell Gain

- Move update:(for each net on moved cell)
- if T (net) $==0$, increment gain on F side of net
- if $T($ net $)==1$, decrement gain on T side of net
- decrement F (net), increment T (net)
- if $F($ net $)==1$, increment gain on F cell

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition [F(net), T(net)]
- Move update:(for each net on moved cell)
- if T (net $)==0$, increment gain on F side of net
- (think -1 => 0)
- if $T($ net $)==1$, decrement gain on T side of net - (think $1=>0$)
- decrement F (net), increment T (net)
- if $F($ net $)==1$, increment gain on F cell
- if $F($ net $)==0$, decrement gain on all cells (T)

Penn ESE535 Spring 2013 -- DeHon

FM Optimization Sequence (ex)

FM Running Time

- Assume:

- constant number of passes to converge
- constant number of random starts
- N cell updates each round (swap)
- Updates K + fanout work (avg. fanout K)
- assume at most K inputs to each node
- For every net attached ($\mathrm{K}+1$)
- For every node attached to those nets $(\mathrm{O}(\mathrm{K}))$
- Maintain ordered list $O(1)$ per move
- every io move up/down by 1
- Running time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
- Algorithm significant for its speed
- (more than quality)

Penn ESE535 Spring 2013 -- DeHon

FM Running Time?

- Randomly partition into two halves
- Repeat until no updates
- Start with all cells free
- Repeat until no cells free
- Move cell with largest gain
- Update costs of neighbors
- Lock cell in place (record current cost)
- Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting pointş̦ Penn ESE535 Spring 2013 -- DeHon

Improving FM

- Clustering
- Initial partitions
- Runs
- Partition size freedom

Following comparisons from Hauck and Boriello '96

Clustering

- Group together several leaf cells into cluster
- Run partition on clusters
- Uncluster (keep partitions)
- iteratively
- Run partition again
- using prior result as starting point
- instead of random start

Clustering Benefits

- Catch local connectivity which FM might miss
- moving one element at a time, hard to see move whole connected groups across partition
- Faster (smaller N)
- METIS -- fastest research partitioner exploits heavily

How Cluster?

- Random

- cheap, some benefits for speed
- Greedy "connectivity"
- examine in random order
- cluster to most highly connected
- 30\% better cut, 16\% faster than random
- Spectral (next week)
- look for clusters in placement
- (ratio-cut like)
- Brute-force connectivity (can be $\mathrm{O}\left(\mathrm{N}^{2}\right)$)

Initial Partitions

- If run several times
- pure random tends to win out
- more freedom / variety of starts
- more variation from run to run
- others trapped in local minima

Penn ESE535 Spring 2013 -- DeHon

Initial Partitions?

- Random
- Pick Random node for one side
- start imbalanced
- run FM from there
- Pick random node and Breadth-first search to fill one half
- Pick random node and Depth-first search to fill half
- Start with Spectral partition

Penn ESE535 Spring 2013 -- DeHon

Today’s Big Ideas:

- Divide-and-Conquer
- Exploit Structure
- Look for sparsity/locality of interaction
- Techniques:
- greedy
- incremental improvement
- randomness avoid bad cases, local minima
- incremental cost updates (time cost)
- efficient data structures

Unbalanced Cuts

- Increasing slack in partitions

Partitioning Summary

- Decompose problem
- Find locality
- NP-complete problem
- linear heuristic (KLFM)
- many ways to tweak
- Hauck/Boriello, Karypis

Penn ESE535 Spring 2013 -- DeHon

Admin

- Reading for Monday online
- Assignment 2A due on Monday

