
ESE535 Spring 2015

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2015 Assignment #2 Wednesday, January 21

Due: Thursday, January 29, 10pm

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration You may discuss algorithmic and testing approaches away from computers.
You may give tutorial assistance on using OS, compiler, and debugging tools. All code
development should be done independently. You may not share code or show each other
code solutions. All writeups must be the work of the individual.

We expect everyone to abide by Penn’s Code of Academic Integrity. http://www.upenn.

edu/academicintegrity/ai_codeofacademicintegrity.html If there is any uncertainty,
please ask.

Writeup Turn-in assignments on canvas. See details on course web page. No handwriting
or hand-drawn figures. See details below on what you need to turn in and the format.

Project Overview We will be developing the tools to map and optimize designs for mini-
mum energy evaluation on the heterogeneous multicontext computing array introduced in [1]
and developed further in [2] and [3]. These tools must cope with conventional CAD optimiza-
tion challenges like partitioning, placement, and routing, along with unique opportunities
and challenges for scheduling. We will start our flow with conventional LUT mapping, which
we take as given,1 and focus our development on tools for physical placement, scheduling,
and routing during the term. As part of assignments 2–8, we will develop initial solutions
to identified sub-problems. After assignment 8, the open-ended project in the later part of
the course will allow you to select and pursue a promising direction to further optimize the
heterogeneous multicontext mapping.

Model The basic model follows [2].

• Each PE has one physical 4-LUT.
• A limited number of LUTs, Inputs, or Outputs can be assigned to each PE. These will

be evaluated sequentially on the physical 4-LUT.
• Local data memory in the PE holds the inputs to the 4-LUTs (Fig. 5 in [2]).
• Interconnect is a physical tree with 1:1 and 2:1 switches; each tree level uses a single

switch type (Fig. 1 in [2]).
• The network is directional (Fig. 1 in [2]).

1...and as we will cover in the course.

1



ESE535 Spring 2015

• We identify a logical growth schedule that characterizes the number of parents for each
PE (at the leaf) or switch. Switches can have either 1 or 2 parents. PEs can have from
1 to 4× the number of LUTs allowed in the PE. For the sake of initial evaluation, we
are not restricting the growth schedule to represent a particular Rent p value.
• The physical growth schedule has the same constraints, but will differ from the logical

growth schedule. The physical growth schedule is smaller. When relevant, we will
likely take p = 0.5 [carch (2 1)*] for the physical growth schedule.
• Sequential routing occurs in waves in which we route all the physical tree inputs from

the carch physical inputs together. We will think of these routing waves as the atomic
unit of clocking. Each PE is clocked once per wave.
• Evaluation must follow circuit precedence constraints. To first order, this means we

route a level as one or more waves through the tree before routing the next level. If a
level requires multiple waves, it may be possible to have mixed waves at the boundary
between levels; we will be exploring this opportunity as part of our optimizations.

Simplification for Input and Outputs Ideally, we might have separate locations where
input and outputs can be assigned. To keep things simple, we will treat inputs and outputs
like LUTs and assign them to leaf clusters in the tree. This could model a case where we have
area-IO and assign physical IOs to the PE clusters. However, even in that case, we would
probably have a limit on the number of IOs per PE cluster. Proposing and dealing with a
more realistic IO model would be a suitable extension to explore in the project portion of
the course.

Opportunity and Challenges A key opportunity, and the one we will attack on the next
series of assignments, will be to maximize the locality of signaling (reduce the distance that
signals must travel in the tree). [2] showed that the synchronous energy can be lower than
the asynchronous energy if the context factor (CF , Sec. 6.5.2) is sufficiently low. We will be
exploring how to exploit freedom in placement and scheduling to minimize CF .

Cost Functions As a starter, we will consider two cost functions that capture important
aspects of a mapping to the a sequential, heterogeneous, multicontext computing array.
First we will consider the total energy spent driving wires. We identify a growth schedule
as defined above. Assuming we have identified a growth schedule, g, the total signals that
must travel along each parent-to-child (or child-to-parent) channel at height h in a tree is:

channel signals(h) =
i=h∏
i=0

g(i) (1)

Assuming the area of a subtree is linear in the number of leaves, an assumption we guarantee
by making parch < 0.5, the length of wires at height h in a tree is:

Length(h) ∝
√

2h = 2h/2 (2)

Strictly due to layout, we will round the h/2 up.

Length(h) ∝ 2d
h
2e (3)

2



ESE535 Spring 2015

The number of parent-to-child channels at level h in a tree is:

Channels(h) =
2H

2h
(4)

where H is the total tree height. Putting this together, the total distance traveled over wires,
and hence the total energy sending data on wire, is proportional to:

Ewire ∝
h=H∑
h=0

(channel signals(h)× Channels(h)× Length(h)) (5)

Ewire ∝
h=H∑
h=0

((
i=h∏
i=0

g(i)

)(
2H

2h

)(
2d

h
2e
))

(6)

When we consider the levelization restriction, we only need interconnect to route one level at
a time, but we will need at least one routing wave for each level. The simplest way to manage
this is to use a growth schedule glevel that can handle the interconnect for any evaluation
level. Then we perform one wave for each level. When we do that, the effort of a wave is
roughly the same as Eq. 6 with glevel in for g.

Ewave ∝
h=H∑
h=0

((
i=h∏
i=0

glevel(i)

)(
2H

2h

)(
2d

h
2e
))

(7)

Ewave is more about clocking and instruction energy than wire energy, so, there is actually a
different constant of proportionality for Ewave and Ewire, which we will defer identifying at
this point. Now we still need to route each level, so the total cost will be:

Eall waves = levels× Ewave (8)

levels is the total number of levels into which the circuit is divided (critical path length or
“makespan” assuming each LUT is unit delay). Then, we compute a version of the context
factor:

CF =
Eall waves

Ewire

(9)

Here we use the ∝’s as equality, since the denominator Ewire is being used like Ewave to
capture the clocking and instruction read work. If the routing perfectly divides into levels,
then glevel(h) = g(h)/levels and CF = 1. In general, that won’t happen, so CF tells us
how much work is added due to the imperfect levelization. As noted, we will be trying to
reduce CF during the term. The optional portion of this assignment explores a slightly more
complex model and the opportunity it provides to reduce CF .

3



ESE535 Spring 2015

i7

i2
i5
a

i6
o9
ff

i1
i3
out:o9

ic4
pclk
c
df

i0
i10
i11
bf PE0

out:gf

PE1

gf
h

PE2 PE3

PE4 PE5

PE6 PE7

Warmup Exercise Consider the netlist example.blif provided in the test subdirectory
of the assignment source code and the initial (poor) assignment of LUTs, Inputs, and Out-
puts to leaf PEs shown above (which corresponds to the placement that the provided code
produces in example.place1).

1. Orient yourself to the BLIF netlist specification and the placement format.

• LUTs and the following FF are merged together when possible. So you see a
placement for bf and not b.
• The .names directive describes each LUT. The last name on the line is the output,

the ones before it are the inputs. (e.g., the line “.names i2 a b” says that i2 and
a are the input to a gate that produces the net b. The zeros and ones below the
.names directive gives the actual logic funciton—we will learn about that format
later in the course; for now you only need to know that it is some gate with not
more than 4 inputs (2 inputs in this case)).

2. Calculate the value of the interconnect cost function for the given placement (Eq. 6
assuming a constant of proportionality of one).

3. Identify the minimum glevel growth schedule that is just large enough to support each
of the required routing waves.

4. Calculate the wave energy (Eq. 7) associated with this glevel.

5. Using the above results (part 2 and 4), calculate the context factor for this placement
(Eq. 9).

6. Identify a better placement of the LUTs and IOs. For your writeup, show which nets
use each wire channel in the tree.

7. Calculate the value of the interconnect cost function for your better placement.

4



ESE535 Spring 2015

Assignment 2 Task Implement code to compute the interconnect cost function (Eq. 6)
and context factor (Eq. 9) from a provided placement and global route for a netlist. We will
use these cost functions in later assignments to assess the benefits of placement, scheduling,
and routing optimizations.

cost.c contains the basic structure for the computation with routines for you to complete.
The interconnect cost (Ewire) is called interconnect cost in the code, and the context
factor, CF , is called context factor.

The code development required for this assignment is not particularly large or tricky. How-
ever, it does demand that you understand and use a relatively large code base. The main
goal of this assignment is for you to begin to understand and work with this code base.

If you do complete this task quickly and would like to explore an optimization that might
improve one of the cost functions, consider the following optional task.

(optional) Assignment 2 Task Identify a level factor for each level to reduce the context
factor. That is, instead of assuming that we design a single wave per level, we can imagine
some levels, perhaps the most demanding ones, being divided into multiple waves. This will
potentially allow us to reduce the level (wave) growth factors and, perhaps, achieve a net
reduction in Ewave. The general formation is that each level is, itself, divided into a number
of waves, wave(l), such that waves(l) × gwave supports the traffic of the level. The total
number of waves is now:

Waves =
l=levels∑

l=0

waves(l) (10)

Note that if waves(l) = 1 for all l, the sum is levels, and this reduces to the simpler
formulation earlier. The energy per wave becomes:

Ewave ∝
h=H∑
h=0

((
i=h∏
i=0

gwave(i)

)(
2H

2h

)(
2d

h
2e
))

(11)

And the total energy across waves:

Eall waves = Waves× Ewave (12)

Working this optional portion will give you the satisfaction of solving a more interesting
problem and showing some potential improvement and a bit of good will from the instructors.

5



ESE535 Spring 2015

Code Base: A heavily used academic package that performs clustering, placement, and
routing is t-vpack/vpr from the University of Toronto [4, 5, 6]. We are using code from
the t-vpack/vpr distribution as a basis for our work (reading the initial netlist, representing
the netlist in C, writing out the final cluster and placement). Using this code base, we
avoid having to rewrite these I/O and representation routines, allowing us to focus on the
optimization.

This assignment only leverages the BLIF reading capabilities of the code base. Since we are
using a tree-based interconnection network rather than a mesh, we will diverge from VPR
on many physical details.

For later assignments, you may find it useful to consult the VPR manual (available in

~ese535/spring2015/manual_430.pdf) for descriptions of some of the original assumptions
in the code. Figure 2 shows what the basic module of a LUT and FF looks like. Since we
are not using a mesh, many of the physical details will not be relevant. The manual also
defines the netlist format. Since we provide code to read and write this formats, you do not
have to implement it, but you will likely find it useful for debugging to be able to look at
these files and make sense of them.

We are providing an infrastructure in C. Pickup the code in assign2.tar from ~ese535/

spring2015/assign2.tar on eniac. Unpack it with tar -xvf assign2.tar. Run make to
build. This should produce an executable main which you can run. The makefile in the
test subdirectory runs main on the various cases needed for this assignment and provides an
example of how to use it. Please use the architecture and target parameters in the makefile

for producing your results for this assignment.

For this assignment, we provide the basic code outline, but you will need to complete various
functions as identified below. In later assignments you will have more responsibility for code
structure and decomposition.

A quick overview of code:

• main.c — contains the main function that drives the overall optimizer; it also contains
the command-line option parsing. You may need to modify this to enable various
debugging options. However, note that we will likely provide you an updated main
functions for later assignments, so be prepared to merge your changes and ours.
• globals.h — defines global data structures: notably the block and net datastructure

that represent the netlist.
• main.h — defines the type structure for block and net.
• tree.c – provides the structure for representing the physical tree and routing. You

will certainly need to use routines provided by this. You should not need to change
it. We expect there will be some additions and refinement to this code as we move
through the assignments.
• domain.c – functions for interacting with domains. For the sake of global routing and

this assignment, domains are used as sets. We will interpret them differently for later
assignments when we get to detailed routing. You will need to use these routines for
implementing your cost functions. You should not need to change them.
• asap.c — compute an ASAP levelization of the netlist. This gives you the level

assignment for assignment 2. You should not need to change this or interact with it,

6



ESE535 Spring 2015

other than using the information it places in the level[] array to identify the level of
each block in the netlist. Later in the project, you may need to explore different level
assignments.
• global route.c — performs a global route of the nets in the design. You will be

using the results of this—the assignment of signals to domains—as input to your cost
function calculation. This code may eventually be a useful reference for you as you
write your own detail routing in later assignments.
• check route.c — as written, validates the global route. This was written primarily

to debug the global route. We will likely refine it for detail routes (or provide an
analogous version for detail routes) later in the term.
• dummy tree place.c —randomly assigns blocks to leaf PEs. This is not a good so-

lution, but a placeholder until you can develop better solutions in later assignments.
It also provides an illustration of how to interface with the routines for placement in
tree.c.
• output clustering.c — prints out the cluster. You should not need to touch.
• read blif.c — parses the BLIF input files and creates the block and net internal

representation for the netlist. You should not need to touch.
• ff pack.c — packs LUTs and FFs. You should not need to touch.
• heapsort.c — a sort implementation. You should not need to touch. You may find

it useful to use this. There is an example of use in asap.c

• queue.c — a queue implementation. You should not need to touch. You may find it
useful to use this.
• util.c — various utilities. You should not need to touch. You may or may not want

to use some of these utilities.

You need to complete code in:

• cost.c – Except for the gross structure and output routines in calculate and print costs(),
you need to complete all the code here as marked.

Caveat: The code not borrowed from t-vpack/vpr was newly written or heavily revised in
the past week for this assignment. While we have tried to test it, like any recently developed
code it may contain bugs. Let us know if you have any problems. Similarly, we may need to
provide updated source as we fix bugs or add additional functionality.

We strongly recommend you become familiar with a debugger (gdb if you don’t already have
a favorite). Since this is C code, it is quite likely you will need to debug memory errors. It
is much easier to do this with the proper tools.

We will ask you to use your solution from earlier assignments (like this one) as a component
of or as a baseline for comparison for your solutions for subsequent assignments. So, you
will want to keep your solution to each piece around for comparison.

We strongly recommend you use version control (e.g., svn, git, cvs) for your code, with the
version control reposistory on a backed-up server, such as the eniac file system. Furthere-
more, you will want to keep track fo the code versions used for each assignment (e.g., tag
versions, create a snapshot, keep the turnin .tar files).

7



ESE535 Spring 2015

Turnin: You will need to upload two files. We have created separate assignments on canvas
so that you only need to submit a single file to each assignment

1. assign2-writeup: a single PDF with

• Your answers to the warmup exercise
• A table summarizing your cost function results for the 6 provided benchmarks.
• A short description of how you calculate the requested cost functions including

an overview of your code.
• (optional) A description of the algorithm you used to assign levels to optimize the

context factor.
• (optional) extend your table to include the optimized context factor result as well

as the required results above.

2. assign2-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign2.tar to create the tar file
• test that you can unpack your assign2.tar and build and run tests on eniac

from the source in the tar file before you upload to canvas; we will build your
code and test it.

References

[1] A. DeHon, “Location, Location, Location—The Role of Spatial Locality in Asymp-
totic Energy Minimization,” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2013, pp. 137–142.

[2] ——, “Wordwidth, Instructions, Looping, and Virtualization—The Role of Sharing in
Absolute Energy Minimization,” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2014, pp. 189–198.

[3] ——, “Fundamental underpinnings of reconfigurable computing architectures,” Proceed-
ings of the IEEE, 2015, To Appear.

[4] V. Betz and J. Rose, “VPR: A new packing, placement, and routing tool for FPGA
research,” in Proceedings of the International Conference on Field-Programmable Logic
and Applications, ser. LNCS, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds., no. 1304.
Springer, August 1997, pp. 213–222.

[5] V. Betz, “VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs,”
http://www.eecg.toronto.edu/∼vaughn/vpr/vpr.html, March 27 1999, version 4.30.

[6] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Norwell, Massachusetts, 02061 USA: Kluwer Academic Publishers, 1999.

8


