
ESE535 Spring 2015

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2015 Assignment #3–6 Wednesday, January 28

Due: Assign 3: Thursday, February 5, 10pm
Due: Assign 4: Thursday, February 12, 10pm
Due: Assign 5: Thursday, February 19, 10pm
Due: Assign 6: Thursday, February 26, 10pm

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration You may not discuss algorithmic and testing approaches. You may give
tutorial assistance on using OS, compiler, and debugging tools. All code development should
be done independently. You may not share code or show each other code solutions. All
writeups must be the work of the individual.

We expect everyone to abide by Penn’s Code of Academic Integrity. http://www.upenn.

edu/academicintegrity/ai_codeofacademicintegrity.html If there is any uncertainty,
please ask.

Writeup Turn-in assignments on canvas. See details on course web page. No handwriting
or hand-drawn figures. See details below on what you need to turn in and the format.

Project Goal for this phase Use partitioning to assign blocks (LUTs, Inputs, Outputs)
to PEs to minimize energy costs. We will particularly use the cost functions calculated in
assignment 2 to metric cost. Ultimately, this means by the end of assignment 6, your code
will have performed full recursive bisection of the input design attempting to minimize both
the total growth schedule and the maximum, per-level growth schedule.

1



ESE535 Spring 2015

This task is broken into 4 milestones to help pace your work.

Suggested milestone goals:

Assign 3 single bipartition only concerned about total nets cut

Assign 4 single bipartition also minimizing max level cut

Assign 5 recursive bipartition based on total nets cut per tree

Assign 6 recursive bipartition based on all costs, total nets cut and max level cut

The actual turnin requirements will be slightly less aggressive than this to give you flexibility
in when you do it and to allow you more time to get initial code fully debugged and running.

Assign 3 data structures and algorithm plan for total net cut optimization, including plan for
recursion; you are not required to have running code or results for this first week.

Assign 4 plan for how will accommodate level max cut optimization; running code and results
for single bipartition targetting only total nets cut

Assign 5 running code, results, and writeup for recursive bipartition based on total nets cut per
tree.

Assign 6 full solution with all results.

Points for these assignment will be weighted toward the later assignments, with assignment
6 weighted more than assignment 3. You should incorporate feedback from earlier writeups
in your later ones.

2



ESE535 Spring 2015

There will be a few non-code questions to go with each assignment. The Assignment 3
questions are here, 4–6 will come out weekly as we get to them.

1. Use the dynamic-programming covering algorithm from lecture and reading to cover
the tree from lecture (repeated below) for minimum delay. Use the delays given
below.

(a) Show the resulting cover (circle the collection of gates in the tree for each library
gate in the final cover and annotate the circle with the assigned library gate).

(b) Report the delay and area for this cover.

(c) Compare to the delay and area for the area-minimizing cover (from class).

Gate
Delay 1 2 3 4 4 4
Area 2 3 4 5 4 5

3



ESE535 Spring 2015

2. How do we change the cost function for the dynamic-programming covering algorithm
to minimize energy?

Here, we will assume the dominant energy is CV 2 switching energy, and the dominant
capacitance is assignable as gate input capacitance. Consequently, we assign each
gate input a number to represent its capacitance. Each net, neti, is further assigned a
switching probability, Pswitch(neti), between 0 and 1, representing the fraction of cycles
on which the node toggles. The total energy of a mapped circuit is thus:

Ecircuit ∝
∑

all gate inputs
(Pswitch(input)× Cinput)

Note that we hold V constant for the mapping, so while we need to know V to compute
the absolute energy, it simply becomes a proportionality constant and we can omit it in
our cost model for minimization. For covering, assume the input netlist is already an-
notated with the switching probability of each net, neti. (Pswitch(input)=Pswitch(neti)
for the neti which is the input to the gate). Particularly, gate inputs in the input
netlist that are hidden inside a mapped gate during covering do not contribute to the
energy for the mapped circuit.

(a) State cost function for computing the energy of a tree cover (analogous with the
ones in class for computing the area or delay of a tree cover).
For reference, we state the area and delay cost functions as:

A(tree) = A(gate) +
∑

input trees i

(A(treei)) (1)

D(tree) = D(gate) + max
input trees i

(D(treei)) (2)

Use Cin(gate, j) to identify the capacitance on the j-th input to a gate.

(b) Assuming all gate inputs have unit capacitance, C1, and the nets toggle with the
probabilities shown, identify the energy minimizing cover for the example tree
circuit below (same as previous problem).

(c) Compare the area and delay of this cover to the area-minimizing and delay-
minimizing covers (area, delay as shown on previous page with Problem 1)

0.5
0.4

0.5

0.4 0.4
0.1 0.1

0.1

0.25

0.5

0.40.4

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

4



ESE535 Spring 2015

Code notes and instructions:

• Code base is only slightly changed from assign2. Pickup updates in ~ese535/spring2015/

assign3.tar on eniac.

• The benchmark set has expanded from assign2. We’ve added more and larger bench-
marks.

• We have added an empty part place.c where you will place your partitioning code.
The routine part place is called from main with arguments to distinguish the various
goals and steps in this assignment.

• We have revised tree.c to create slots and domains for switches. Previously, these
were only allocated within PEs. The idea is that you can use these at the switch level
to keep track of the nodes assigned to each subtree during partitioning.

– added insert block switch to place a block at a switch. This allows you to
place blocks into the switch slots.

• [1/30/14] Added code to part place that puts all the blocks that need to be par-
titioned at the root switch to illustrate use of insert block switch and the general
setup of using switch slots to keep track of blocks in a subtree; also added dummy code
to do a dumb partition and put blocks on left and right switches from root to illustrate
and to setup for calculating the top cut.

• Note that you can associate information for blocks (or nets) using an array like level
(asap.h,c). For example, you might use an array index by block to keep track of
whether the block is assigned to the left partition or right partition (or is outside of
the current subtree) during partitioning. You might use another array to keep track of
the current gain (KLFM, Day4 lecture) on a block.

• [1/29/14] Fix bugs in counting in domain .

• [1/30/14] Clocks are no longer placed and routed. This means changes to main,
check route, global route, dummy tree place and tree.

• [1/30/14] Added calculate and write top cut to report out single cut for assign-
ment 4.

• For recursive partitions, the cut size (number of parents) out of the left and right
subtrees may be different. It may be useful to track that directly as part of your
partitioning cost. TODO: provide an example.

5



ESE535 Spring 2015

Assignment 3 turnin: a single PDF with

• Summary of the data structures you will use for partitioning
• Pseudocode for your partitioning algorithm, including the plan for performing the

partitioning recursively down to the PE leaves
• Explanation of your partitioning algorithm and data structures
• Answers to the two covering problems.

Assignment 4 turnin: You will need to upload two files. We have created separate
assignments on canvas so that you only need to submit a single file to each assignment

1. assign4-writeup: a single PDF with

• Answers to assignment 4 problems (problems to be provided separately).
• Explanation of your final partitioning algorithm and data structures; this should

be stand-alone from assignment 3. It’s likely your algorithm and data structures
have changed somewhat from assignment 3.
• Description of how you will modify you partitioning algorithm to minimize the

maximum level cut, include a description of the new or refined data structures
required.
• Table of results for the provided benchmark set reporting the single-partition cut

size when using (a) the existing dummy partition and (b) your bipartitioner.

2. assign4-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign3456.tar to create the tar file
• test that you can unpack your assign3456.tar and build and run tests from

there before you upload to blackboard; we will build your code and test it.

6



ESE535 Spring 2015

Assignment 5 turnin: You will need to upload two files. We have created separate
assignments on canvas so that you only need to submit a single file to each assignment

1. assign5-writeup: a single PDF with

• Answers to assignment 5 problems (problems to be provided separately).
• Explanation of your final partitioning algorithm and data structures; this should

be stand-alone from previous assignments. It’s likely your algorithm and data
structures have changed somewhat from previous assignments. If there are no
changes or need for revision, it can be a copy of what you turned in before.
• Table of results for the provided benchmark set reporting the results of the as-

signment 2 cost functions (interconnect cost, context factor) when using (a) the
existing dummy partition and (b) your recursive bipartitioner.

2. assign5-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign3456.tar to create the tar file
• test that you can unpack your assign3456.tar and build and run tests from

there before you upload to blackboard; we will build your code and test it.

Assignment 6 turnin: You will need to upload two files. We have created separate
assignments on canvas so that you only need to submit a single file to each assignment

1. assign6-writeup: a single PDF with

• Answers to assignment 6 problems (problems to be provided separately).
• Explanation of your final partitioning algorithm and data structures to handle

full recursive partitioning and both total cut and maximum level cut; this should
be stand-alone from previous assignments. It’s likely your algorithm and data
structures have changed somewhat from previous assignments. If there are no
changes or need for revision, it can be a copy of what you turned in before, but
should address any feedback you received on previous writeups.
• Table of results for the provided benchmark set reporting the results of the as-

signment 2 cost functions (interconnect cost, context factor) when using (a) the
existing dummy partition (b) your recursive bipartitioner targetting only the total
wires cut at each partition, (c) your level-max-aware recursive bipartitioner.

2. assign6-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign3456.tar to create the tar file
• test that you can unpack your assign3456.tar and build and run tests from

there before you upload to blackboard; we will build your code and test it.

7


