
ESE535 Spring 2015

University of Pennsylvania
Department of Electrical and Systems Engineering

Electronic Design Automation

ESE535, Spring 2015 Assignment #7–8 Wednesday, March 4

Due: Assign 7: Thursday, March 19, 10pm
Due: Assign 8: Thursday, March 26, 10pm

Resources You are free to use any books, articles, notes, or papers as references. Provide
citations in your writeup as appropriate.

Collaboration You may not discuss algorithmic and testing approaches. You may give
tutorial assistance on using OS, compiler, and debugging tools. All code development should
be done independently. You may not share code or show each other code solutions. All
writeups must be the work of the individual.

We expect everyone to abide by Penn’s Code of Academic Integrity. http://www.upenn.

edu/academicintegrity/ai_codeofacademicintegrity.html If there is any uncertainty,
please ask.

Writeup Turn-in assignments on canvas. See details on course web page. No handwriting
or hand-drawn figures. See details below on what you need to turn in and the format.

Project Goal for this phase Develop a detailed router that assigns each net to specific
switches on specific waves, minimizing the number of waves necessary to route the entire
design.

This is a two week project, with the functioning code due at the assignment 8 date. Use
your experience from previous assignment to plan. I expect you should have code for a basic
level of functionality written and into debugging by the assignment 7 due date, so that you
can finish debugging, optimize, and get solid results for the assignment 8 due date.

1



ESE535 Spring 2015

Assignment 7 exercises:

1. Consider doing simulated-annealing placement of the LUTs (and IOs) onto PEs for the
heterogeneous multicontext computing array. Identify a suitable cost function to use
with simulated annealing and describe its suitability in terms of:

(a) Relation to assignment 2 cost functions

(b) Ability to reward every incremental move that makes progress toward the assign-
ment 2 cost function goals

(c) Time complexity of computing the ∆cost for a proposed moved

2. Thinking of routing on the heterogeneous multicontext computing array as a list-
scheduling problem, describe a suitable priority function to order the routing nets?
(What properties of nets should you consider? How do you combine or select among
these priorities? What is your complete ordering strategy?) [Hint: This may be
relevant to your routing solution.]

3. Consider using Pathfinder to route for the heterogeneous multicontext computing array.
Provide short (one or two paragraph) answers describing key changes or adaptation
needed to make Pathfinder applicable:

(a) Route strictly by level. Each level should be routed in the smallest number of
waves, but each level is given its own set of waves. So, level 0 might get waves 0
and 1, level 1 might get waves 2–5, level 2 waves 6 and 7, etc.

(b) Route by level in sequence from level 0 but allow routes to start as early as
predecessors allow, even if it is before the nominal first wave of a level. Continuing
the example above, a level 1 net whose inputs are satisfied by wave 0 could attempt
routing in wave 1.

(c) Route all levels together. Include a description of what makes this harder in your
answer.

[Note: This is probably not relevant to a routing solution you will develop during the
two weeks of this assignment but would be relevant if you wanted to spend more time
developing a higher quality router.]

2



ESE535 Spring 2015

Code notes and instructions:

• Code base is augmented from assignment 3. Pickup updates in ~ese535/spring2015/

assign7.tar on eniac.

• detail route.c is where you need to complete your router code.

• model.c and energy.c provide a new, more detailed cost model structure. Since we
provide the code and its invocation, you do not need to work with this directly. Current
model.c is a placeholder that we intend to update the week after Spring Break (around
the time assignment 7 is due, so that you have the revised version for your assignment
8 experiments).

• tree energy.c applies the energy model and writes out the final cost estimates.

• tree.c has been augmented to support the statistics gathering for tree energy.c.

• We have revised main.c to invoke the detailed router, check the detail routes, and call
the routines in tree energy.

• We broke out grow.c to call functions from assignment 2 and return the level growth
schedule.

• We do not require that you implement a complete congestion-negotiation router for
assignment 8.1 We simply require that (1) all nets are routed, and (2) you make effort
to minimize the waves during routing.

• heapsort.c provides a sort implementation that may be useful.

• We added valid detail routes to check route.c to check the validity of routes you
compute.

• Note the update timestep function in tree.c. When you route the output of a LUT
(or input), use this to record the wave for the route. This should be consistent with the
routing wave (domain) used in the interconnect. This is where valid detail route

(called from valid detail routes ) figures out which domain should hold the route.
It is also how check routing precedence (also called from valid detail routes )
checks the schedule of LUT evaluations and routing is reasonable.

• You will likely find the detail route validator above and the global router (global route.c)
valuable references for working with the tree data structure and domains. The global
router uses the domains as we did in assignment 2,2 but it does illustrate how to traverse
the tree. The detail route validator uses domains as we will use for this assignment; it
is the piece of code that validates when routes are properly formed.

1That might be something to do for the project.
2So, is not an example of how you should use domains for your detail router.

3



ESE535 Spring 2015

• We added dump detail route domains to tree.c. This will likely be useful in scru-
tinizing routes made by your router (and route failures).

For this assignment, we will use the domains in the switches differently. Rather than treating
them as a set (as we did for partitioning and global routing), we will use the domains to keep
track of signal occupancy during routing waves. That is, each domain will correspond to a
particular routing wave. A signal started into the network on a wave, can only use switch
outputs (inputs) and wires on that wave, so it can only occupy corresponding domain slots
in the tree switches between the source node and the sink node. So, for example, when the
PE sends a LUT output out over domain 3, the level 1 switch will receive it on domain 3
and send it out to a parent or sibling on domain 3.

Note that we still run global routing on the binary tree first using the set interpretation
in order to identify the appropriate growth schedule (which we extract using the routine
in grow.c, which in turn calls your functions from assignment 2). Then, we create a new
tree using the growth schedule for this detail routing. However, we force the leaf growth
(glevel[0]) to the value specified by a new command-line option physical c (which we
will take as 1 for the primary experiments).

Most nets fanout to multiple sinks. When routing a net, you want to use as few wire segments
as possible. This, typically means sharing the wire segments for the prefix of the routes as
much as possible. For example, if block A in location 0 is an input to block B in location
7, C in location 6, and D in location 6, then you would prefer to have a single set of wire
segment routing up to the least common subtree at height 3. Furthermore, you should be
able to take a single wire segment down through the height 2 switch to the 6, 7 tree, where
the route would need to split to reach both the 6 and 7 PE. You only need to route A once to
location 6 to provide the input for both C and D. This also means you would like to perform
this route in a single domain.3

Legal routes must respect LUT precedence. The inputs to a LUT must arrive on waves
(domains) that precede the LUT output. Your routing effectively (re)schedules your LUTs.4

In this manner, it may also be able to reduce the number of waves needed by better scheduling
the use of routing tracks.

It may be useful to compute an ALAP schedule time for the nodes.

3The code is only setup to route a net in a single domain, so don’t get fancy and try to split a net across
multiple domains.

4This is why you need to use update timestep.

4



ESE535 Spring 2015

Assignment 7 turnin: [50pts] a single PDF with

• Answers to assignment 7 exercises.
• Description of any additional data structure you use for routing.
• Pseudocode for your routing algorithm
• Explanation of your routing algorithm and data structures, including what you do to

attempt to minimize the number of waves required.
• Implementation and results status – describe the status of your implementation and

summarize any results you have already been able to obtain.

Assignment 8 turnin: [200pts] You will need to upload two files. We have created separate
assignments on canvas so that you only need to submit a single file to each assignment

1. assign8-writeup: a single PDF with

• Description of any additional data structure you use for routing.
• Pseudocode for your routing algorithm
• Explanation of your routing algorithm and data structures, including what you

do to attempt to minimize the number of waves required.
• Description, data, and graphs from any experimentation and tuning you per-

formed.
• Table of results for the provided benchmark set reporting the (i) global routing

waves, (ii) achieved detail routing waves, (iii) final routed energy cost according
to supplied model. Provide (i), (ii), (iii) for both the dummy partitioner (cost2
target) and your most advanced, level-oriented, recursive bisection partitioner
(assignment 6, cost6 target).

• Discussion of your results.

2. assign8-code: a single tar file with your code (no binary files, but in an archive like
the provided support so it can be unpacked and built)

• run make clean in both the code and test directories
• use make assign78.tar to create the tar file
• test that you can unpack your assign78.tar and build and run tests from there

before you upload to canvas; we will build your code and test it.

5


