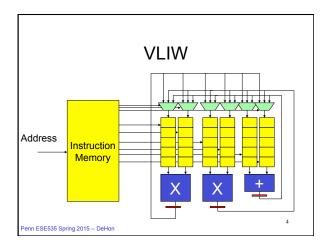
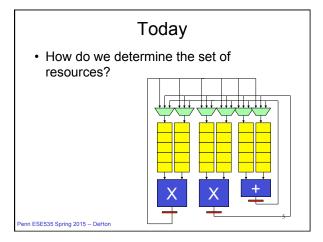
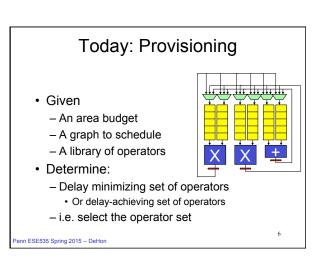
ESE535: Electronic Design Automation

Day 10: February 18, 2015 Architecture Synthesis (Provisioning, Allocation)

Penn ESE535 Spring 2015 -- DeHon


Behavioral (C, MATLAB, ...) Today Arch. Select RTL FSM assign • Problem Two-level, Multilevel opt. • Brute-Force/Exhaustive Covering Greedy Retiming Gate Netlist Estimators Placement Routing · Analytical Provisioning Layout · ILP Schedule and Provision Masks


enn ESE535 Spring 2015 – DeHon


Previously

- General formulation for scheduled operator sharing
 - VLIW
- Fast algorithms for scheduling onto fixed resource set
 - List Scheduling
- More extensive algorithms for timeconstrained
 - Force Directed, Branch-and-Bound

Penn ESE535 Spring 2015 -- DeHon

Exhaustive

- 1. Identify all area-feasible operator sets
 - E.g. preclass exercise
- 2. Schedule for each
- 3. Select best
- → optimal
- Drawbacks?

Penn ESE535 Spring 2015 -- DeHon

Exhaustive

- How large is space of feasible operator sets?
 - As function of
 - operator types O
 - Types: add, multiply, divide,
 - Maximum number of operators of type m

 m^{O}

Penn ESE535 Spring 2015 -- DeHon

Implication

 Feasible operator space can be too large to explore exhaustively

Penn ESE535 Spring 2015 -- DeHon

Greedy Incremental

- · Start with one of each operator
- · While (there is area to hold an operator)
 - Which single operator
 - Can be added without exceeding area limit?
 - Schedule (maybe list-schedule?)
 - Calculate benefit (maybe $\Delta T/\Delta A$?)
 - Pick largest benefit
 - Add one operator of that type
- How long does this run?
 - T_{schedule}(E)* O(operator-types * A)

Penn ESE535 Spring 2015 - DeHon

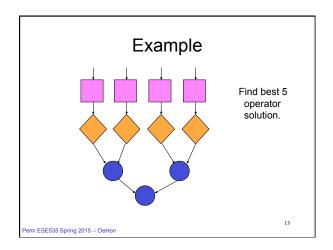
10

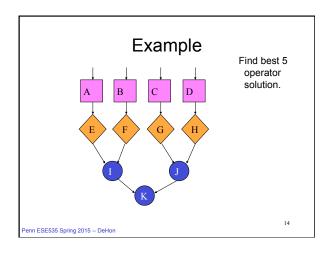
Greedy Incremental

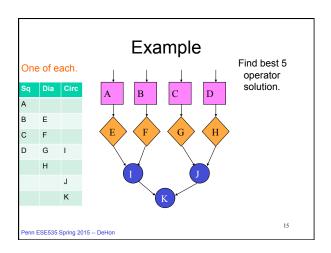
- Work Preclass with greedy incremental
 - For each step

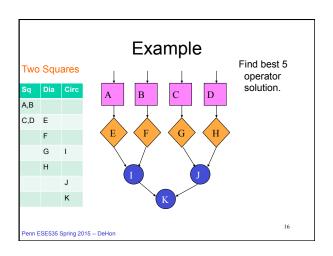
• half class evaluate each candidate resource

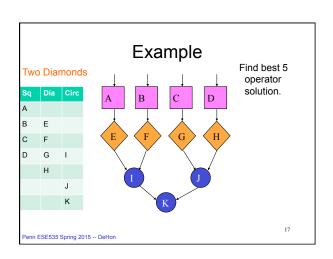
Penn ESE535 Spring 2015 -- DeHon

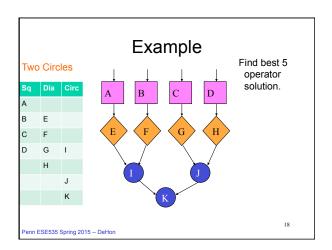

Greedy Incremental

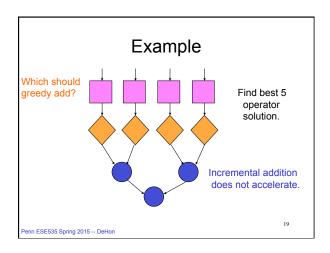

- · Start with one of each operator
- · While (there is area to hold an operator)
 - Which single operator
 - · Can be added without exceeding area limit?
 - Schedule (maybe list-schedule?)
 - Calculate benefit (maybe $\Delta T/\Delta A$?)
 - Pick largest benefit
 - Add one operator of that type
- · Weakness?

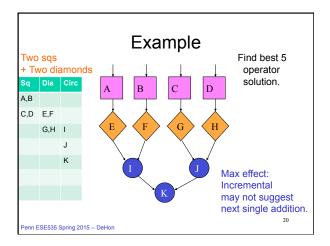

Penn ESE535 Spring 2015 - DeHon


11


12







Analytic Formulation

Penn ESE535 Spring 2015 -- DeHon

21

Challenge

- · Scheduling expensive
 - -O(|E|) or O(|E|*log(|V|)) using list-schedule
- · Results not analytic
 - Cannot write an equation around them
- · Bounds are sometimes useful
 - No precedence → is resource bound
 - Often one bound dominates
- Latency bound unaffected by operator count

22

Estimations

- Step 1: estimate with resource bound - O(|E|) vs. O(|V|) evaluation
- · Step 2: use estimate in equations $- T=max(N_1/M_1, N_2/M_2,...)$
- · Most useful when RB>>CP

Penn ESE535 Spring 2015 -- DeHon

23

Constraints

- · Let A_i be area of operator type i
- Let M_i by number of operators of type i

$$\sum A_i \times M_i \leq Area$$

(start summary of variables on board)

Penn ESE535 Spring 2015 - DeHon

Achieve Time Target

- · Want to achieve a schedule in T cycles
- What constraint equation does that imply? (what property must hold?)
- Each resource bound must be less than T cycles:
 - $N_i/M_i \le T$

Penn ESE535 Spring 2015 -- DeHon

25

Algebraic Solve

- · Set of equations
 - $-N_i/M_i \leq T$
 - Σ A_i M_i ≤ Area
- · Assume equality for time bound
- $N_i/M_i=T \rightarrow M_i=N_i/T$

$$\frac{\sum A_i \times N_i}{T} \le Area_{26}$$

Penn ESE535 Spring 2015 - DeHon

Rearranging

$$\frac{\sum A_i \times N_i}{T} \leq Area$$

$$\frac{\sum A_i \times N_i}{Area} \le T$$

Penn ESE535 Spring 2015 -- DeHon

Bounding T

· Gives Lower Bound on T

$$\frac{\sum A_i \times N_i}{Area} \le T$$

Intuition: N of each is right balance given unbounded area; Scale to area available.

Penn ESE535 Spring 2015 - DeHon

28

Preclass

What is T_{lower} for preclass?

$$\frac{\sum A_i \times N_i}{A_{rea}} \le T$$

$$T \ge \frac{1 \times 8 + 2 \times 4}{7} = \frac{16}{7} \approx 2.3$$
 $T \ge 3$

Penn ESE535 Spring 2015 -- DeHon

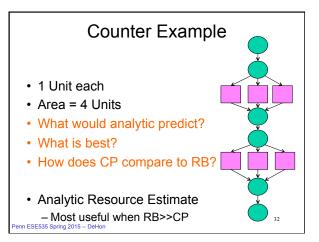
Back Substitute from T to x

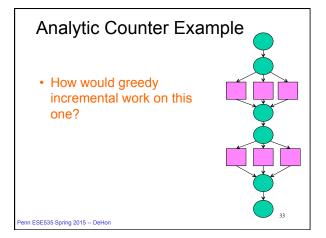
•
$$M_i = N_i / T$$

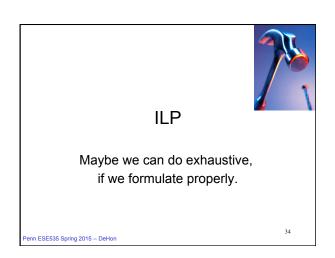
$$\frac{\sum A_i \times N_i}{4\pi a \pi} \le T$$

Area

- M_i won't necessarily be integer
 - Round down definitely feasible solution
 - May have room to move a few up by 1
- · Reduces range may need to search
 - (just over the residual area once rounded down)


Penn ESE535 Spring 2015 -- DeHon




- M_i=N_i/T
- T>=3
- M_{add}, M_{mpv} ?
- $M_{add} = 8/3 \rightarrow 2 \text{ or } 3$
- $M_{mpy} = 4/3 \rightarrow 1 \text{ or } 2$

Penn ESE535 Spring 2015 -- DeHon

31

ILP

- · Integer Linear Programming
- Formulate set of linear equation constraints (inequalities)
 - $Ax_0 + Bx_1 + Cx_2 \le D$
 - $x_0 + x_1 = 1$
 - A,B,C,D constants
 - x_i variables to satisfy
 - No products on variables, just linear weighted sums
- · Can constrain variables to integers
- No polynomial time guarantee
 - But often practical
 - Solvers exist (significant piece on April 1 (seriously))

Penn ESE535 Spring 2015 -- DeHon

ILP Provision and Schedule Now to make it look like an ILP nail... • Formulate operator selection and scheduling as ILP problem

enn ESE535 Spring 2015 - DeHon

Formulation

- Integer variables M_i
 - number of operators of type i
- 0-1 (binary) variables x_{i,i}
 - 1 if node i is scheduled into timestep j
 - 0 otherwise
- Variable assignment completely specifies operator selection and schedule
- This formulation for achieving a target time T (time constrained)
 - j ranges 0 to T-1

Penn ESE535 Spring 2015 -- DeHon

37

Target T → Min T

- · Formulation targets T
- What if we don't know T?
 - Want to minimize T?
- · Do binary search for minimum T
 - How does that impact solution time?

Penn ESE535 Spring 2015 - DeHon

38

Constraints

What properties must hold true for a solution to be valid?

- 1. Total area constraints
- 2. Not assign too many things to a timestep
- 3. Assign every node to some timestep
- 4. Maintain precedence

Penn ESE535 Spring 2015 -- DeHon

39

(1) Total Area

· Same as before

$$\sum A_i \times M_i \leq Area$$

Penn ESE535 Spring 2015 - DeHon

40

(2) Not overload timestep

- For each timestep j
 - For each operator type k

$$\sum_{o_i \in FU_k} x_{i,j} \le M_k$$

Penn ESE535 Spring 2015 -- DeHon

41

(3) Node is scheduled

• For each node in graph

$$\sum_{i} x_{i,j} = 1$$

Can narrow to sum over slack window.

Penn ESE535 Spring 2015 – DeHon

42

(4) Precedence Holds

• For each edge from node src to node snk

$$\sum_{j} j \times x_{src,j} - \sum_{j} j \times x_{snk,j} \le -1$$

Can narrow to sum over slack windows.

Penn ESE535 Spring 2015 -- DeHon

Example (Time Permitting)

- · What are the ILP equations for the preclass example?
 - 1. Total area constraints
 - 2. Not assign too many things to a timestep
 - 3. Assign every node to some timestep
 - 4. Maintain precedence

enn ESE535 Spring 2015 - DeHon

Constraints

- 1. Total area constraints
- 2. Not assign too many things to a timestep
- 3. Assign every node to some timestep
- 4. Maintain precedence

Penn ESE535 Spring 2015 -- DeHon

ILP Solver

- · ILP Solver can take these constraints and find a solution (satisfying assignment)
- · On Wednesday, will see how to start to make this practical

enn ESE535 Spring 2015 - DeHon

Round up Algorithms and Runtimes

- · Exhaustive Schedule
- · Greedy Schedule
- · Analytic Estimates
- ILP formulation

Penn ESE535 Spring 2015 -- DeHon

Estimators

· Dominating Effects

· Reformulate as a problem we already have a solution for

Big Ideas:

- ILP

· Technique: Greedy · Technique: ILP

enn ESE535 Spring 2015 - DeHon

Admin

- Assignment 5 Thursday
- No class on Monday
 - Will have class on Wednesday
- No assignment 6 supplement
 - Focus on project and writeup
- Reading for Wednesday online

Penn ESE535 Spring 2015 -- DeHon

49