

Improvement: Ordered

- · Order operations
- · Keep track of existing solution
- · Use to constrain or pass costs to next subproblem

Improvement: Ordered · Order operations · Keep track of existing solution Use to constrain or pass costs to next subproblem · Flow cut - use existing in src/sink - A nets = src, B nets = sink 33 Penn ESE535 Spring 2015 -- DeHon

Improvement: Ordered

- · Order operations
- · Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- · Flow cut - use existing in src/sink - A nets = src, B nets = sink
- · FM: start with fixed, unmovable nets for side-biased inputs

nn ESE535 Spring 2015 – DeHon

Improvement: Constrain · Partition once · Constrain movement within existing partitions · Account for both H and V crossings Partition next - (simultaneously work parallel problems) - easy modification to FM 35 Penn ESE535 Spring 2015 -- DeHon

Qua	lity: Ar	ea		n-L: Analytic O: network	global place flow detail
Case	GORD-L	DOMINO MSTx100	QUAD	Impr. GOB-L	Impr. DOMI
	10800		10000		
prim1	10500	10059	10208	2.8%	-1.5%
prim2	45994	43705	44478	$\frac{3.3\%}{12.9\%}$	-1.8% 8.9%
ind2 ind3	436300	$417264 \\ 1048673$	380194	12.9% 13.5%	8.9%
	1121000		970068		
fract C1908	$400 \\ 1858$	$\frac{383}{1767}$	380 1830	$\frac{5.0\%}{1.5\%}$	0.8%
C5315	6220	5922	6185	0.6%	-4.4%
C6288	8794	8339	8312	5.5%	0.3%
s1423	2334	2208	2265	3.0%	-2.6%
s1425 s1488	$2554 \\ 2680$	2558	2470	7.8%	3.4%
s1400 s5378	2080 8609	2358 8182	8208	4.7%	-0.3%
s9234	14848	14023	13848	6.7%	1.3%
s13207	31284	29995	28161	9.9%	6.1%
s15207 s15850	$31284 \\ 37020$	$\frac{29995}{35591}$	33625	9.2%	5.5%
struct	4160	3967	4196	-0.9%	-5.8%
biomed	34677	33712	33787	2.6%	-0.2%
avg_s	95648	92355	95867	-0.2%	-3.8%
avq_s avq_l	100650	97825	101930	-1.3%	-4.2%
Impr.	100030	31823	101930	4.8%	0.3%
mpr.				7.670	0.370
enn ESE535 Spring 2	2015 DeHon	[Huan	g&Kahng	/ISPD199	7] ₄

	Qı	uality: Del	ay	
• W	eiaht edae	s based on c	riticality	
	0 0	erleaved timing		
	1	Max Intrinsic	, , , .	Timing-
Case	Measure	Path Delay	TW7.0	QUAD
C	Delay	10.6	$17.9 \\ 349$	18.1 347
fract	MSTx100		70.0	79.3
fract struct	MSTx100 Delay MSTx100	40.0	$ 78.8 \\ 5130 $	5103
	Delay	40.0		

Uses

- Good by self
- Starting point for simulated annealing – speed convergence
- With synthesis (both high level and logic)

 get a quick estimate of physical effects
 (play role in estimation/refinement at larger level)
- Early/fast placement – before willing to spend time looking for best
- For fast placement where time matters – FPGAs, online placement?

Penn ESE535 Spring 2015 -- DeHon

Penn ESE535 Spring 2015 -- DeHon

51

53

