ESE535:
Electronic Design Automation
Day 11: February 25, 2015
Placement
(Intro, Constructive)
Pem sess35 sping 2015- - oeton

Placement

- Problem: Pick locations for all building blocks
- minimizing energy, delay, area
- really:
- minimize wire length
- minimize channel density

Preclass Channel Widths

- Channel Width for Problem 1?
E
 5

Today - 2D Placement Problem - Partitioning \rightarrow Placement - Quadrisection - Refinement	Behavioral (C, MATLAB, ...) RTL FSM assign Two-level, Multilevel opt. Covering Retiming Gate Netlist Layout Masks
Penn ESE535 Spring 2015 -- DeHon	2

2

Preclass Channel Widths

- Channel Width for Problem 2?

Bad: Area

- All wires cross bisection
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ area
- good: $\mathrm{O}(\mathrm{N})$

\qquad

Delay

- How good can delay be?

Clock Cycle Radius

- Radius of logic can reach in one cycle (45 nm)
- 1 Cycle Radius = 10
- Few hundred PEs
- Chip side 1,000 PE
- million PEs
- 100s of cycles to cross

Bad: Delay

- All critical path wires cross chip
- Delay $=\mathrm{O}\left(|\mathrm{PATH}| * 2 * \mathrm{~L}_{\text {side }}\right)$ - [and $\mathrm{L}_{\text {side }}$ is $\mathrm{O}(\mathrm{N})$]
- good: $\mathrm{O}\left(|\mathrm{PATH}|^{*} \mathrm{~L}_{\mathrm{g}}\right)$
- compare 10ps gates to many nanoseconds to cross chip
Penn ESE535 Spring 2015 -- DeHon 10

Bad: Energy

- All wires cross chip:
$\mathrm{O}\left(\mathrm{L}_{\text {side }}\right)$ long $\rightarrow \mathrm{O}\left(\mathrm{L}_{\text {side }}\right)$ capacitance per wire
- Recall Area $\rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$
- So $\mathrm{L}_{\text {side }} \rightarrow \mathrm{O}(\mathrm{N})$
$\times \mathrm{O}(\mathrm{N})$ wires $\rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$ capacitance
- Good:
$\mathrm{O}(1)$ long wires $\rightarrow \mathrm{O}(\mathrm{N})$ capacitance

Illustration

- Consider a complete tree
- nand2's, no fanout
- N nodes
- Logical circuit depth?
- Circuit Area?
- Side Length?
- Average wire length between nand gates? (lower bound)

Penn ESE535 Spring 2015 -- DeHon

Constructive Placement

Placement Problem
 Characteristics

- Familiar
- NP Complete
- local, greedy not work
- greedy gets stuck in local minima

Basic Idea

- Partition (bisect) to define halves of chip - minimize wire crossing
- Recurse to refine
- When get down to single component, done

Adequate?

- Does recursive bisection capture the primary constraints of two-dimensional placement?

Example

- Think of this (right) as logical graph.
- Assume we find the "right" bisection (shown)
- Where do A and B go?
- How does recursive partitioning enforce/ encourage this?

Problems

- Greedy, top-down cuts
- maybe better pay cost early?
- Two-dimensional problem
- (often) no real cost difference between H and V cuts
- Interaction between subtrees
- not modeled by recursive bisect

Problem

- Need to keep track of where things are
- outside of current partition
- include costs induced by above
- ...but don't necessarily know where things are
- still solving problem

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
- use existing in src/sink
- A nets = src, B nets $=$ sink

Improvement: Constrain

- Partition once
- Constrain movement within existing partitions
- Account for both H and V crossings
- Partition next
- (simultaneously work parallel problems)
- easy modification to FM

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem
- Flow cut
- use existing in src/sink
- A nets = src, B nets = sink
- FM: start with fixed, unmovable nets for side-biased inputs
Penn ESE535 Spring 2015 -- DeHon

Improvement: Quadrisect

- Solve more of problem at once
- Quadrisection:
- partition into 4 bins simultaneously
- keep track of costs all around

Quadrisect

- Modify FM to work on multiple buckets
- k-way has:
$-k(k-1)$ buckets
- |from|x|to|
- quad $\rightarrow 12$
- reformulate gains

- update still $O(1)$

Recurse

- Keep outside constraints - (cost effects)
- Problem?
- Don't know detail place
- What can we do?
- Model as at center of unrefined region

Penn ESE535 Spring 2015 -- DeHon

Iteration/Cycling

- General technique to deal with phase-ordering problem
- what order do we perform transformations, make decisions?
- How get accurate information to everyone
- Still basically greedy
enn ESE535 Spring 2015 -- DeHon

Possible Refinement

- Allow unbalanced cuts
- most things still work
- just distort refinement groups
- allowing unbalance using FM quadrisection looks a bit tricky
- gives another 5-10\% improvement

Iterate

- After solve later problems
- "Relax" solution
- Solve earlier problems again with refined placements (cost estimates)
- Repeat until converge

Refinement

- Relax using overlapping windows
- Deal with edging effects
- Huang\&Kahng claim 10-15\% improve
- cycle
- overlap

Penn ESE535 Spring 2015 -- DeHon

Runtime

- Each gain update still $O(1)$
- (bigger constants)
- so, FM partition pass still O(N)
- $O(1)$ iterations expected
- assume $\mathrm{O}(1)$ overlaps exploited
- $\mathrm{O}(\log (\mathrm{N}))$ levels
- Total: $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- very fast compared to typical annealing
- (annealing next time)

Quality: Area $\quad \begin{aligned} & \text { Gordian-L: Analytic global placer } \\ & \text { DOMINO: network flow detail }\end{aligned}$					
	GORD-L	OMMINO	QUAD	Tmpr.	
Case	MSTx100			GOR-L	DOMI
prim1	10500	10059	10208	2.8\%	-1.5\%
prim2	45994	43705	44478	3.3\%	-1.8\%
ind2	436300	417264	380194	12.9\%	8.9\%
ind3	1121000	1048673	970068	13.5\%	7.5\%
fract	400	383	380	5.0\%	0.8\%
C1908	1858	1767	1830	1.5\%	-3.6\%
C5315	6220	5922	6185	0.6\%	-4.4\%
C6288	8794	8339	8312	5.5\%	0.3\%
s1423	2334	2208	2265	3.0%	-2.6\%
s1488	2680	2558	2470	7.8\%	3.4\%
s5378	8609	8182	8208	4.7\%	-0.3\%
s9234	14848	14023	13848	6.7%	1.3\%
s13207	31284	29995	28161	9.9\%	6.1%
s15850	37020	35591	33625	9.2\%	5.5\%
struct	4160	3967	4196	-0.9\%	-5.8\%
biomed	34677	33712	33787	2.6%	-0.2\%
avq_s	95648 100650	92355 97825	95867 101930	-0.2% -1.3%	$\begin{aligned} & -3.8 \% \\ & -4.2 \% \end{aligned}$
Impr.				4.8\%	0.3\%
Penn ESE535 Spring	15 -- DeHon	[Huan	\&Kahng	SPD19	49

UseS
- Good by self
- Starting point for simulated annealing
- speed convergence
- With synthesis (both high level and logic)
- get a quick estimate of physical effects
- (play role in estimation/refinement at larger level)
- Early/fast placement
- before willing to spend time looking for best
- For fast placement where time matters
- FPGAs, online placement?
Penn EsE535 Spring 2015-- Deton

Big Ideas:

- Potential dominance of interconnect
- Divide-and-conquer
- Successive Refinement
- Phase ordering: estimate/relax/iterate

Big Ideas:
- Potential dominance of interconnect
- Divide-and-conquer
- Successive Refinement
- Phase ordering: estimate/relax/iterate

Quality: Delay

- Weight edges based on criticality
- Periodic, interleaved timing analysis

Case	Measure	Max Intrinsic Path Delay	TW7.0	Timing- QUAD
	Delay	10.6	17.9	18.1
	MSTx100		449	347
struct	Delay	40.0	78.8	79.3
	MSTx100		5130	5103
avq-s	Delay	37.3	61.4	60.9
	MSTx100			46763

Penn ESE535 Spring 2015 -- DeHon

Summary

- Partition to minimize cut size
- Additional constraints to do well - Improving constant factors
- Quadrisection
- Keep track of estimated placement
- Relax/iterate/Refine

