
1

Penn ESE 535 Spring 2015 -- DeHon 1

ESE535:
Electronic Design Automation

Day 14: March 16, 2015
Routing 2

(Pathfinder)

Penn ESE 535 Spring 2015 -- DeHon 2

Today

•  Routing
– Pathfinder

•  graph based
•  global routing
•  simultaneous global/detail

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE 535 Spring 2015 -- DeHon 3

Global Routing
•  Problem: Find sequence of channels

for all routes
– minimizing channel sizes
– minimize max channel size
– meeting channel capacity limits

Penn ESE 535 Spring 2015 -- DeHon 4

Global→Graph

•  Graph Problem on routes through
regions

w

Penn ESE 535 Spring 2015 -- DeHon 5

Global/Detail
•  With limited switching (e.g. FPGA)

– can represent routing graph exactly

Penn ESE 535 Spring 2015 -- DeHon 6

Global/Detail

2

Penn ESE 535 Spring 2015 -- DeHon 7

Routing in Graph
•  Find {shortest,available} path between

source and sink
– search problem (e.g. BFS, A*)

Penn ESE 535 Spring 2015 -- DeHon 8

Breadth First Search (BFS)

•  Start at source src
•  Put src node in priority queue with cost 0

–  Priority queue orders by cost
•  While (not found sink)

–  Pop least cost node from queue
•  Get: current_node, current_cost

–  Is this sink? found
–  For each outgoing edge from current_node

•  Push destination onto queue
•  with cost current_cost+edge_cost

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 9

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 10

Not possible to
use minimum
Manhattan
distance route.
Why?

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 11

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 12

3

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 13

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 14

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 15

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 16

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 17

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 18

4

Search Animation

Penn ESE 535 Spring 2015 -- DeHon 19 Penn ESE 535 Spring 2015 -- DeHon 20

Easy?

•  Finding a path is moderately easy
•  What’s hard?
•  Can I just iterate and pick paths?

– Does greedy selection work?

Penn ESE 535 Spring 2015 -- DeHon 21

Example

s1 s3 s2

d2 d1 d3

All links capacity 1

si →di

Penn ESE 535 Spring 2015 -- DeHon 22

Challenge

•  Satisfy all routes simultaneously
•  Routes share potential resources
•  Greedy/iterative

–  not know who will need which resources
•  E.g. consider routing s3->d3 then s2->d2 then s1->d1

–  i.e. resource/path choice looks arbitrary
–  …but earlier decisions limit flexibility for later

•  like scheduling
–  order effects result

s1 s3 s2

d2 d1 d3

Penn ESE 535 Spring 2015 -- DeHon 23

Negotiated Congestion

•  Idea:
–  try once
– see where we run into problems
– undo problematic/blocking allocation

•  rip-up
– use that information to redirect/update

costs on subsequent trials
•  retry

Penn ESE 535 Spring 2015 -- DeHon 24

Negotiated Congestion

•  Here
–  route signals
– allow overuse
–  identify overuse and encourage signals to

avoid
•  reroute signals based on overuse/past

congestion

5

Penn ESE 535 Spring 2015 -- DeHon 25

Basic Algorithm

•  Route signals along minimum cost path
•  If congestion/overuse

– assign higher cost to congested resources
•  Makes problem a shortest path search
•  Allows us to adapt costs/search to problem

•  Repeat until done

Penn ESE 535 Spring 2015 -- DeHon 26

Key Idea
•  Congested paths/resources become

expensive
•  When there is freedom

–  future routes with freedom to avoid congestion
 will avoid the congestion

•  When there is less freedom
–  must take congested routes

•  Routes that must use congested will,
 others will chose uncongested paths

Penn ESE 535 Spring 2015 -- DeHon 27

Cost Function (1)
•  PathCost=Σ (link costs)
•  LinkCost = base × f(#routes using, time)
•  Base cost of resource

–  E.g. delay of resource
–  Encourage minimum resource usage

•  (minimum length path, if possible)
–  minimizing delay = minimizing resources

•  Congestion
–  penalizes (over) sharing
–  increase sharing penalty over time

s1 s3 s2

d2 d1 d3

2 3 4 3
1 1

1

1
1

4
4

3
2

1 1 1

3+1+4=8

Penn ESE 535 Spring 2015 -- DeHon 28

Example
 (first order congestion)

Base costs (delays)

s1 s3 s2

d2 d1 d3

2 3 4 3
1 1

1

1
1

4
4

3
2

1 1 1 Capacity

1 1

1 1 1 1 1 1 1

What is preferred path for s1d1, s2d2, s3d3?

FUTURE: maybe label circles
So they can callout.

Penn ESE 535 Spring 2015 -- DeHon 29

Example
 (first order congestion)

s1 s3 s2

d2 d1 d3

2 3 4 3
1 1

1

1
1

4
4

3
2 Base costs (delays)

1 1 1 Capacity

All, individual routes prefer middle; create congestion.

1 1

1 1

1 1 1 1

1

1 1

1 1

1 1

Penn ESE 535 Spring 2015 -- DeHon 30

Example
 (first order congestion)

s1 s3 s2

d2 d1 d3

2 3 4 3
1 1

1

1
1

4
4

3
2 Base costs (delays)

1 1 1 Capacity

If make congestion expensive:
 e.g. cost(congest)=2users What happens when
 reroute s1d1?

1 1

1 1

1 1 1 1

1

1 1

1 1

1 1

6

Penn ESE 535 Spring 2015 -- DeHon 31

Example
 (first order congestion)

s1 s3 s2

d2 d1 d3

2 3 4 3
1 1

1

1
1

4
4

3
2 Base costs (delays)

1 1 1 Capacity

Reroute, avoid congestion.

1 1

1 1

Penn ESE 535 Spring 2015 -- DeHon 32

Example (need for history)

Base costs (delays)

Capacity

Need to redirect uncongested paths.

s1 s2

d2 d1
2

1 1

s3

d3

1

s4

d4

2 2

1

1
1

1

2
1

1

1

2
1

1

Penn ESE 535 Spring 2015 -- DeHon 33

Example (need for history)

s1 s2

d2 d1

2 2

2

1 1

1

1 s3

d3

1
1

2
1

1

1

Imagine partially routed. s4

d4

1
1

2
1

1

1
Where do we route s3d3?

What happens when
 we reroute?

Penn ESE 535 Spring 2015 -- DeHon 34

Example (need for history)

Cannot route s3d3

s1 s2

d2 d1

2 2

2

1 1

1

1 s3

d3

1
1

2
1

1

1

Local congestion alone
won’t drive in right
directions.

Both paths equal cost
…neither resolves problem.

May ping-pong back
and forth.

(can imagine longer
chain like this)

s4

d4

1
1

2
1

1

1

Penn ESE 535 Spring 2015 -- DeHon 35

Cost Function (2)

•  Cost = (base + history)*f(#resources,time)

•  History
– avoid resources with history of congestion
– E.g. add 1 to history every time resource is

congested

Penn ESE 535 Spring 2015 -- DeHon 36

Example (need for history)
S3d3 and s4d4
 initially ping-pong

Builds up congestion history on
 path 3 and 4

Eventually makes path 3 and 4
 more expensive than path 1;
 …resolves conflict…

 Adaptive cost scheme.

s1 s2

d2 d1

2 2

2

1 1

1

1 s3

d3

1
1

2
1

1

1

s4

d4

1

2
1

1

How does history help?

7

Delay

Penn ESE 535 Spring 2015 -- DeHon 37 Penn ESE 535 Spring 2015 -- DeHon 38

What about delay?

•  Existing formulation uses delay to
reduces resources, but doesn’t directly
treat

•  How do we want to optimize delay?
•  Want:

– prioritize critical path elements for shorter
delay

– allow nodes with slack to take longer paths

Penn ESE 535 Spring 2015 -- DeHon 39

Integrate Delay into Cost Function

•  Cost=
–  (1-W(edge))*delay + W(edge) *congest
– congest as before

•  (base+history)*f(#signals,time)

•  W(edge) = Slack(edge)/Dmax
 0 for edge on critical path
 >0 for paths with slack

•  Use W(edge) to order routes
•  Update critical path and W each round

Penn ESE 535 Spring 2015 -- DeHon 40

Cost Function (Delay)
•  Cost=

–  (1-W(edge))*delay + W(edge) *congest
– congest as before

•  (base+history)*f(#signals,time)

•  W(edge) = Slack(edge)/Dmax

•  What happens if multiple slack 0 nets
contend for edge?

•  W(edge)=Max(minW,Slack(edge)/Dmax)
– minW > 0

Problem

•  Are nanoseconds and congestion
comparable?

•  How normalize/weight so can add
together?

Penn ESE 535 Spring 2015 -- DeHon 41

VPR

•  If doesn’t uncongest,
 weight congestion more

•  Cost=
(1-W(e))×delay + W(e)×PF(iter)×congest
 PF=Pressure Factor Multiplier

•  Eventually congest dominates delay
•  What might go wrong?

Penn ESE 535 Spring 2015 -- DeHon 42

8

VPR Pressure Factor

•  Converges quickly
•  But may “freeze” with higher delay than

necessary
•  Netlist Shuffle experiment

Penn ESE 535 Spring 2015 -- DeHon 43 [Rubin / FPGA 2011]

VPR Pressure Factor Tuning

Penn ESE 535 Spring 2015 -- DeHon 44 [Raphael Rubin 2010]

(1-W(e))×delay + W(e)×PF(iter)×congest

Alternate Delay Approach

•  Believe Pathfinder can resolve congestion
•  Pathfinder has trouble mixing delay and

congestion
•  Idea: Turn delay problem into congestion

problem
– Reject paths that are too long
– All signals compete only for resources that

will allow them to meet their timing goals

Penn ESE 535 Spring 2015 -- DeHon 45

Outlaw Long Paths

•  Issue: Critical path may go through
multiple gates
– Contain more than one gategate path
– How allocate slack among paths?

Penn ESE 535 Spring 2015 -- DeHon 46

Target 12
Gate 1
Manhattan hop 1

Outlaw Long Paths

•  Issue: Critical path may go through
multiple gates
– Contain more than one gategate path
– How allocate slack among paths?

Penn ESE 535 Spring 2015 -- DeHon 47

Target 12
Gate 1
Manhattan hop 1

Outlaw Long Paths

•  Issue: Critical path may go through
multiple gates
– Contain more than one gategate path
– How allocate slack among paths?

Penn ESE 535 Spring 2015 -- DeHon 48

1 2 3 4

5 6 7 8

9

Target 12
Gate 1
Manhattan hop 1

Total Slack?

9

Slack Budgeting
•  Divide slack among the paths

– Slack of 3
– Example: give slack 1 to first link

 2 to second

Penn ESE 535 Spring 2015 -- DeHon 49 [So / FPGA 2008]

1 2 3 4

5 6 7 8

9

Slack Budgeting
•  Divide slack among the paths
•  Each net now has delay target
•  Reject any path exceeding delay target
•  Reduce to congestion negotiation

Penn ESE 535 Spring 2015 -- DeHon 50 [So / FPGA 2008]

5
6

Slack Budgeting
•  Can often find lower delay routes that

VPR
•  Takes 10x as long

– Mostly in slack budgeting
•  Solution depends on slack budget

– Not exploiting full freedom to re-allocate
slack among links

Penn ESE 535 Spring 2015 -- DeHon 51 [So / FPGA 2008]

Delay Target Routing

•  Similar high-level idea
•  Just set target for Pathfinder cost

– Rather than allowing to float

Penn ESE 535 Spring 2015 -- DeHon 52

Delay Target

•  Cost=
 (1-W(edge))*delay + W(edge) *congest

•  W(edge) = Slack(edge)/Dtarget
– Previously: denominate was Dmax

•  Compute Slack based on Dtarget
– can be negative

•  W(edge)=Max(minW,Slack(edge)/Dtarget)
– minW > 0

Penn ESE 535 Spring 2015 -- DeHon 53

Delay Target Routing

•  Does allow slack to be used on any of
the gategate connections on path
– …but not being that deliberate/efficient

about the allocation
•  Doesn’t require time for slack allocation

Penn ESE 535 Spring 2015 -- DeHon 54

10

Delay Target Routing

Penn ESE 535 Spring 2015 -- DeHon 55 [Rubin / FPGA 2011]

Delay Target Routing

•  Less sensitive to initial conditions

Penn ESE 535 Spring 2015 -- DeHon 56 [Rubin / FPGA 2011]

Penn ESE 535 Spring 2015 -- DeHon 57

Run Time?

•  Route |E| edges
•  Each path search O(|Egraph|) worst case

– …generally less
•  Iterations?

Penn ESE 535 Spring 2015 -- DeHon 58

Quality and Runtime Experiment
•  For Synthetic netlists

on HSRA
–  Expect to be worst-case

problems
•  Congestion only

–  Quality = # channels
•  Number of individual

route trials limited
(measured) as multiple
of nets in design
–  (not measuring work

per route trial)

Penn ESE 535 Spring 2015 -- DeHon 59

Quality: fixed runtime

Penn ESE 535 Spring 2015 -- DeHon 60

Quality Target

11

Penn ESE 535 Spring 2015 -- DeHon 61

Conclusions?

•  Iterations increases with N
•  Quality degrade as we scale?

Penn ESE 535 Spring 2015 -- DeHon 62

Techniques to Accelerate

(already in use in data just shown)

Penn ESE 535 Spring 2015 -- DeHon 63

Inefficient?

What is inefficient about
 this search?

How might we do better?

Penn ESE 535 Spring 2015 -- DeHon 64

Inefficient?

What if we only searched
 for minimum length paths?

How would we do that?

Downside?

Recall Search Example

Penn ESE 535 Spring 2015 -- DeHon 65

Not possible to
use minimum
Manhattan
distance route.

Only Search Minimum Length

Penn ESE 535 Spring 2015 -- DeHon 66

12

Minimum Search

Penn ESE 535 Spring 2015 -- DeHon 67

What is the minimum
 we need to search
 (if uncongested)?

What would that
 search look like?

BFS vs. DFS

Penn ESE 535 Spring 2015 -- DeHon 68

Penn ESE 535 Spring 2015 -- DeHon 69

Search Ordering

•  Default: breadth first search for shortest
– O(total-paths)

•  Alternately: use A*:
– estimated costs/path length, prune

candidates earlier
– can be more depth first

•  (search promising paths as long as know can’t
be worse)

Penn ESE 535 Spring 2015 -- DeHon 70

BFS A*
•  Start at source
•  Put src node in priority queue with cost 0

–  Priority queue orders by cost
–  Cost = Σ (path so far) + min path to dest

•  While (not found sink)
–  Pop least cost node from queue

•  Get: current_node, current_cost
–  Is this sink? found
–  For each outgoing edge

•  Push destination onto queue
•  with cost current_cost+edge_cost

Maybe show a
 parameter here
 for tuning how greedy?

Penn ESE 535 Spring 2015 -- DeHon 71

BFS vs. A*

Penn ESE 535 Spring 2015 -- DeHon 72

Single-side, Directed (A*)

Only expand search windows as
prove necessary to have longer route.

13

Penn ESE 535 Spring 2015 -- DeHon 73

Search: one-side vs. two-sides

•  One-side vs. Two-sides

Penn ESE 535 Spring 2015 -- DeHon 74

Searching
•  In general:

– greedy/depth first searching
•  find a path faster
•  may be more expensive

–  (not least delay, congest cost)
–  tradeoff by weighting

•  estimated delay on remaining path vs. cost to this
point

•  control greediness of router
– More greedy is faster at cost of less optimal

paths (wider channels)
•  40% W 10x time reduction [Tessier/thesis’98]

Penn ESE 535 Spring 2015 -- DeHon 75

Searching

•  Use A* like search
– Always expanded (deepen) along shortest

…as long as can prove no other path will
dominate

– Uncongested: takes O(path-length) time
– Worst-case reduces to breadth-first

•  O(total-paths)

Penn ESE 535 Spring 2015 -- DeHon 76

Summary
•  Finding short path easy/well known
•  Complication: need to route set of

signals
– who gets which path?
– Arbitrary decisions earlier limit options later

•  Idea: iterate/relax using congestion
history
– update path costs based on congestion

•  Cost adaptive to route
–  reroute with new costs

•  Accommodate delay and congestion

Penn ESE 535 Spring 2015 -- DeHon 77

Big Ideas

•  Exploit freedom
•  Technique:

– Graph algorithms (BFS, DFS)
– Search techniques: A*
–  Iterative improvement/relaxation
– Adaptive cost refinement

Penn ESE 535 Spring 2015 -- DeHon 78

Admin
•  Assignment 4 due Wednesday
•  Reading for Wednesday on web
•  Spring Break next week
•  Reading for Monday after break

– On Blackboard

