
Penn ESE535 Spring 2015 -- DeHon 1

ESE535:
Electronic Design Automation

Day 15: March 23, 2015
Dataflow

Penn ESE535 Spring 2015 -- DeHon 2

Previously

•  Scheduling of
concurrent operations

A7 A8

B11

A9

B2

B3

B4

A1

A2

A3

A4

A5

A6

A10 A11 A13 A12

B5

B1

B6

B7

B8

B9

B10

Penn ESE535 Spring 2015 -- DeHon 3

Want to See

•  Abstract compute model
– natural for parallelism and hardware

•  Describe computation abstracted from
implementation
– Defines correctness

Penn ESE535 Spring 2015 -- DeHon 4

Today

•  Dataflow
•  SDF

– Single rate
– Multirate

•  Dynamic Dataflow
•  Expression

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2015 -- DeHon 5

Parallelism Motivation

Penn ESE535 Spring 2015 -- DeHon 6

Producer-Consumer Parallelism

•  Can run concurrently
•  Just let consumer know when producer

sending data

Stock
predictions encrypt

Penn ESE535 Spring 2015 -- DeHon 7

Pipeline Parallelism

•  Can potentially all run in parallel
•  Like physical pipeline
•  Useful to think about stream of data

between operators

ME DCT VQ code

Penn ESE535 Spring 2015 -- DeHon 8

DAG Parallelism

•  Doesn’t need to be linear pipeline
•  Synchronize inputs

Check/decode
block synchronize

Decode
video

Decode
audio

Penn ESE535 Spring 2015 -- DeHon 9

Graphs with Feedback

•  In general may hold state
•  Very natural for many tasks

+ +
×k

×k ×k

×k

Penn ESE535 Spring 2015 -- DeHon 10

Definitions

Operation/Operator

•  Operation – logic computation to be
performed

•  Operator – physical block that performs
an Operation

Penn ESE535 Spring 2015 -- DeHon 11

Penn ESE535 Spring 2015 -- DeHon 12

Dataflow / Control Flow

Dataflow
•  Program is a graph

of operations
•  Operation consumes

tokens and
produces tokens

•  All operations run
concurrently

Control flow (e.g. C)
•  Program is a

sequence of
operations

•  Operation reads
inputs and writes
outputs into
common store

•  One operation runs
at a time
–  defines successor

Penn ESE535 Spring 2015 -- DeHon 13

Token

•  Data value with presence indication
– May be conceptual

•  Only exist in high-level model
•  Not kept around at runtime

– Or may be physically represented
•  One bit represents presence/absence of data

Token Examples?

•  What are familiar cases where data may
come with presence tokens?
– Network packets
– Memory references from processor

•  Variable latency depending on cache presence

– Start bit on serial communication

Penn ESE535 Spring 2015 -- DeHon 14

Penn ESE535 Spring 2015 -- DeHon 15

Operation

•  Takes in one or more inputs
•  Computes on the inputs
•  Produces results

•  Logically self-timed
–  “Fires” only when input set present
– Signals availability of output

Penn ESE535 Spring 2015 -- DeHon 16

Penn ESE535 Spring 2015 -- DeHon 17

Dataflow Graph
•  Represents

– computation sub-blocks
–  linkage

•  Abstractly
– controlled by data presence

Penn ESE535 Spring 2015 -- DeHon 18

Dataflow Graph Example

In-Class Dataflow Example

Penn ESE535 Spring 2015 -- DeHon 19

Penn ESE535 Spring 2015 -- DeHon 20

Stream

•  Logical abstraction of a persistent point-
to-point communication link
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data

from source to sink

stream

Penn ESE535 Spring 2015 -- DeHon 21

Streams

•  Captures communications structure
– Explicit producerconsumer link up

•  Abstract communications
– Physical resources or implementation
– Delay from source to sink

Register Transfer Level
(RTL)

•  Describe computation as logic
and registers

•  Equations (logic) define values
to be clocked into next register

•  Typically what you right in
VHDL, Verilog

Penn ESE535 Spring 2015 -- DeHon 22

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2015 -- DeHon 23

Dataflow Abstracts Timing

•  Doesn’t say
–  on which cycle calculation occurs [contrast RTL]

•  Does say
–  What order operations occur in
–  How data interacts

•  i.e. which inputs get mixed together

•  Permits
–  Scheduling on different # of resources
–  Operators with variable delay [examples?]
–  Variable delay in interconnect [examples?]

Examples
•  Operators with Variable Delay

– Cached memory or computation
– Shift-and-add multiply
–  Iterative divide or square-root

•  Variable delay interconnect
– Shared bus
– Distance changes

•  Wireless, longer/shorter cables

– Computation placed on different cores?
Penn ESE535 Spring 2015 -- DeHon 24

Penn ESE535 Spring 2015 -- DeHon 25

Difference:
Dataflow Graph/Pipeline

Penn ESE535 Spring 2015 -- DeHon 26

Clock Independent Semantics

Interconnect
Takes n-clocks

Penn ESE535 Spring 2015 -- DeHon 27

Semantics

•  Need to implement semantics
–  i.e. get same result as if computed as

indicated
•  But can implement any way we want

– That preserves the semantics
– Exploit freedom of implementation

Penn ESE535 Spring 2015 -- DeHon 28

Dataflow Variants

Penn ESE535 Spring 2015 -- DeHon 29

Synchronous Dataflow (SDF)

•  Particular, restricted form of dataflow
•  Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– When full set of inputs are available

•  Can produce output

– Can fire any (all) operations with inputs
available at any point in time

Penn ESE535 Spring 2015 -- DeHon 30

Synchronous Dataflow

+ +
×k

×k ×k

×k

Penn ESE535 Spring 2015 -- DeHon 31

SDF: Execution Semantics

while (true)
Pick up any operator
If operation has full set of inputs

Compute operation
Produce outputs
Send outputs to consumers

Penn ESE535 Spring 2015 -- DeHon 32

Multirate Synchronous Dataflow

•  Rates can be different
– Allow lower frequency operations
– Communicates rates to CAD

•  Something not clear in RTL
•  Use in scheduling, provisioning

– Rates must be constant
•  Data independent

decimate
2 1

Penn ESE535 Spring 2015 -- DeHon 33

SDF

•  Can validate flows to check legal
–  Like KCL  token flow must be conserved
–  No node should

•  be starved of tokens
•  Collect tokens

•  Schedule operations onto processing elements
–  Provisioning of operators

•  Provide real-time guarantees

•  Simulink is SDF model

Penn ESE535 Spring 2015 -- DeHon 34

SDF: good/bad graphs

1

2

1

1

1

1

1

1

1

1

1

1

Penn ESE535 Spring 2015 -- DeHon 35

SDF: good/bad graphs

1

1

1

2

1

1

1

1

1

2

1

1

1

2

1

2

1

1

Penn ESE535 Spring 2015 -- DeHon 36

Dynamic Rates?

•  When might static rates be limiting?
(prevent useful optimizations?)
– Compress/decompress

•  Lossless
•  Even Run-Length-Encoding

– Filtering
•  Discard all packets from spamRus

– Anything data dependent

Penn ESE535 Spring 2015 -- DeHon 37

Data Dependence

•  Add Two Operators
– Switch
– Select

Penn ESE535 Spring 2015 -- DeHon 38

Switch

Penn ESE535 Spring 2015 -- DeHon 39

Filtering Example

spamRus?

switch

discard
dup

Penn ESE535 Spring 2015 -- DeHon 40

Select

Penn ESE535 Spring 2015 -- DeHon 41

Constructing
If-Then-Else

In-Order Merge

•  Task: Merge to ordered streams in
order onto a single output stream
– Key step in merge sort

•  Use to illustrate switch/select

Penn ESE535 Spring 2015 -- DeHon 42

Idiom to Selectively
Consume Input

•  Hold onto current
head on loop
– Shown left here
– With T-side control

Penn ESE535 Spring 2015 -- DeHon 43

In-Order Merge
•  Use one for each of the two input streams

Penn ESE535 Spring 2015 -- DeHon 44

In-Order Merge

•  Perform Comparison

Penn ESE535 Spring 2015 -- DeHon 45

In-Order Merge
•  Act on result of comparison

Penn ESE535 Spring 2015 -- DeHon 46

Penn ESE535 Spring 2015 -- DeHon 47

Looping

•  for (i=0;i<Limit;i++)

Universal

•  Once we add switch and select,
the dataflow model is as powerful as
any other
– E.g. can do anything we could do in C
–  “Turing Complete” in formal CS terms

Penn ESE535 Spring 2015 -- DeHon 48

Penn ESE535 Spring 2015 -- DeHon 49

Dynamic Challenges

•  In general, cannot say
–  If a graph is well formed

• Will not deadlock
– How many tokens may have to buffer in

stream
– Right proportion of operators for

computation

Penn ESE535 Spring 2015 -- DeHon 50

Expression
(Time Permitting)

How would we capture this in a
Programming Language?

Penn ESE535 Spring 2015 -- DeHon 51

Expression

•  Could express operations in C/Java
– Each is own thread

•  Link together with Streams
•  E.g. SystemC

Penn ESE535 Spring 2015 -- DeHon 52

C Example

while (!(eos(stream_a) && !(eos(stream_b))
A=stream_a.read();
B=stream_b.read();
Out=(a+b)*(a-b);
stream_out.write(Out);

Penn ESE535 Spring 2015 -- DeHon 53

Connecting up Dataflow

stream stream1=new stream();
operation prod=new stock(stream1);
operation cons=new encrypt(stream1);

Stock
predictions encrypt

What have we gained?
•  Ability to capture more freedom that exists

– Freedom we can use to reduce costs
•  A1: Model for expressing freedom that

exists in the computation
– Higher-level than an implementation
– Perhaps as a useful intermediate

•  A2: Model allows freedom for
implementations (or instances) to take
variable time?

Penn ESE535 Spring 2015 -- DeHon 54

Penn ESE535 Spring 2015 -- DeHon 55

Summary

•  Dataflow Models
– Simple pipelines
– DAGs
– SDF (single, multi)-rate
– Dynamic Dataflow

•  Allow
– express parallelism
–  freedom of implementation

Penn ESE535 Spring 2015 -- DeHon 56

Big Ideas:

•  Dataflow
– Natural model for capturing computations
– Communicates useful information for

optimization
•  Linkage, operator usage rates

•  Abstract representations
– Leave freedom to implementation

Penn ESE535 Spring 2015 -- DeHon 57

Admin

•  HW7
•  Reading for Wednesday on Canvas
•  HW8 Thursday

