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Previously 

•  Scheduling of 
concurrent operations 
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Want to See 

•  Abstract compute model 
– natural for parallelism and hardware 

•  Describe computation abstracted from 
implementation 
– Defines correctness 
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Today 

•  Dataflow 
•  SDF 

– Single rate 
– Multirate 

•  Dynamic Dataflow 
•  Expression 

Behavioral  
(C, MATLAB, …) 
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Parallelism Motivation 
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Producer-Consumer Parallelism 

•  Can run concurrently 
•  Just let consumer know when producer 

sending data 

Stock 
predictions encrypt 
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Pipeline Parallelism 

•  Can potentially all run in parallel 
•  Like physical pipeline 
•  Useful to think about stream of data 

between operators 

ME DCT VQ code 
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DAG Parallelism 

•  Doesn’t need to be linear pipeline 
•  Synchronize inputs 

Check/decode 
block synchronize 

Decode 
video 

Decode 
audio 
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Graphs with Feedback 

•  In general may hold state 
•  Very natural for many tasks 
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Definitions 



Operation/Operator 

•  Operation – logic computation to be 
performed 

•  Operator – physical block that performs 
an Operation 
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Dataflow / Control Flow 

Dataflow 
•  Program is a graph 

of operations 
•  Operation consumes 

tokens and 
produces tokens 

•  All operations run 
concurrently 

Control flow (e.g. C) 
•  Program is a 

sequence of 
operations 

•  Operation reads 
inputs and writes 
outputs into 
common store 

•  One operation runs 
at a time  
–  defines successor 
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Token 

•  Data value with presence indication 
– May be conceptual 

•  Only exist in high-level model 
•  Not kept around at runtime 

– Or may be physically represented 
•  One bit represents presence/absence of data 



Token Examples? 

•  What are familiar cases where data may 
come with presence tokens? 
– Network packets 
– Memory references from processor 

•  Variable latency depending on cache presence 

– Start bit on serial communication 
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Operation 

•  Takes in one or more inputs 
•  Computes on the inputs 
•  Produces results 

•  Logically self-timed 
–  “Fires” only when input set present 
– Signals availability of output 
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Dataflow Graph 
•  Represents  

– computation sub-blocks 
–  linkage 

•  Abstractly 
– controlled by data presence 
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Dataflow Graph Example 



In-Class Dataflow Example 
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Stream 

•  Logical abstraction of a persistent point-
to-point communication link 
– Has a (single) source and sink 
– Carries data presence / flow control 
– Provides in-order (FIFO) delivery of data 

from source to sink 

stream 
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Streams 

•  Captures communications structure 
– Explicit producerconsumer link up 

•  Abstract communications 
– Physical resources or implementation 
– Delay from source to sink 



Register Transfer Level  
(RTL) 

•  Describe computation as logic 
and registers 

•  Equations (logic) define values 
to be clocked into next register 

•  Typically what you right in 
VHDL, Verilog 
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Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Dataflow Abstracts Timing 

•  Doesn’t say  
–  on which cycle calculation occurs [contrast RTL] 

•  Does say 
–  What order operations occur in 
–  How data interacts 

•  i.e. which inputs get mixed together 

•  Permits 
–  Scheduling on different # of resources 
–  Operators with variable delay [examples?] 
–  Variable delay in interconnect [examples?] 



Examples 
•  Operators with Variable Delay 

– Cached memory or computation 
– Shift-and-add multiply 
–  Iterative divide or square-root 

•  Variable delay interconnect 
– Shared bus 
– Distance changes  

•  Wireless, longer/shorter cables 

– Computation placed on different cores? 
Penn ESE535 Spring 2015 -- DeHon 24 



Penn ESE535 Spring 2015 -- DeHon 25 

Difference:  
Dataflow Graph/Pipeline 
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Clock Independent Semantics 

Interconnect 
Takes n-clocks 
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Semantics 

•  Need to implement semantics 
–  i.e. get same result as if computed as 

indicated 
•  But can implement any way we want 

– That preserves the semantics 
– Exploit freedom of implementation 
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Dataflow Variants 
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Synchronous Dataflow (SDF) 

•  Particular, restricted form of dataflow 
•  Each operation 

– Consumes a fixed number of input tokens 
– Produces a fixed number of output tokens 
– When full set of inputs are available 

•  Can produce output 

– Can fire any (all) operations with inputs 
available at any point in time 
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Synchronous Dataflow 

+ + 
×k 

×k ×k 
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SDF: Execution Semantics 

while (true) 
Pick up any operator 
If operation has full set of inputs 

Compute operation 
Produce outputs 
Send outputs to consumers 
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Multirate Synchronous Dataflow 

•  Rates can be different 
– Allow lower frequency operations 
– Communicates rates to CAD 

•  Something not clear in RTL 
•  Use in scheduling, provisioning 

– Rates must be constant 
•  Data independent 

decimate 
2 1 
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SDF 

•  Can validate flows to check legal 
–  Like KCL  token flow must be conserved 
–  No node should 

•  be starved of tokens 
•  Collect tokens 

•  Schedule operations onto processing elements 
–  Provisioning of operators 

•  Provide real-time guarantees 

•  Simulink is SDF model 
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SDF: good/bad graphs 
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SDF: good/bad graphs 
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Dynamic Rates? 

•  When might static rates be limiting? 
(prevent useful optimizations?) 
– Compress/decompress 

•  Lossless 
•  Even Run-Length-Encoding 

– Filtering 
•  Discard all packets from spamRus 

– Anything data dependent 
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Data Dependence 

•  Add Two Operators 
– Switch 
– Select 
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Switch 



Penn ESE535 Spring 2015 -- DeHon 39 

Filtering Example 

spamRus? 

switch 

discard 
dup 
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Select 
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Constructing  
If-Then-Else 



In-Order Merge 

•  Task: Merge to ordered streams in 
order onto a single output stream 
– Key step in merge sort 

•  Use to illustrate switch/select 
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Idiom to Selectively  
Consume Input 

•  Hold onto current 
head on loop 
– Shown left here 
– With T-side control 
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In-Order Merge 
•  Use one for each of the two input streams 
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In-Order Merge 

•  Perform Comparison 
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In-Order Merge 
•  Act on result of comparison 
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Looping 

•  for (i=0;i<Limit;i++) 



Universal 

•  Once we add switch and select, 
the dataflow model is as powerful as 
any other 
– E.g. can do anything we could do in C 
–  “Turing Complete” in formal CS terms 
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Dynamic Challenges 

•  In general, cannot say 
–  If a graph is well formed 

• Will not deadlock 
– How many tokens may have to buffer in 

stream 
– Right proportion of operators for 

computation 
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Expression 
(Time Permitting) 

How would we capture this in a 
Programming Language? 
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Expression 

•  Could express operations in C/Java 
– Each is own thread 

•  Link together with Streams 
•  E.g. SystemC 
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C Example 

while (!(eos(stream_a) && !(eos(stream_b)) 
A=stream_a.read(); 
B=stream_b.read(); 
Out=(a+b)*(a-b); 
stream_out.write(Out); 
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Connecting up Dataflow 

stream stream1=new stream(); 
operation prod=new stock(stream1); 
operation cons=new encrypt(stream1); 

Stock 
predictions encrypt 



What have we gained? 
•  Ability to capture more freedom that exists 

– Freedom we can use to reduce costs 
•  A1: Model for expressing freedom that 

exists in the computation 
– Higher-level than an implementation 
– Perhaps as a useful intermediate 

•  A2: Model allows freedom for 
implementations (or instances) to take 
variable time? 
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Summary 

•  Dataflow Models 
– Simple pipelines 
– DAGs 
– SDF (single, multi)-rate 
– Dynamic Dataflow 

•  Allow  
– express parallelism 
–  freedom of implementation 
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Big Ideas: 

•  Dataflow  
– Natural model for capturing computations 
– Communicates useful information for 

optimization 
•  Linkage, operator usage rates 

•  Abstract representations 
– Leave freedom to implementation 
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Admin 

•  HW7 
•  Reading for Wednesday on Canvas 
•  HW8 Thursday 


