ESES535:
Electronic Design Automation

Day 17: March 30, 2015
High Level Synthesis I
Dataflow Graph Sharing

& Penn,

Penn ESE535 Spring 2015 -- DeHon

Behavioral

Today (C, MATLAB, ...)
l Sharing
Arch. Select

. hedul
Sharing R
. FSM assign
Dataflow subgraph Two-level,
— Pattern identification Multilevel opt.
Covering

— Pattern selection Retiming

Gate Netlist
Placement
Routing

Layout

Masks

Penn ESE535 Spring 2015 -- DeHon 2

Flow Review

) (B) © (D) (E)

Penn ESE535 Spring 2015 -- DeHon 3

Additional Concerns?

What are we still not satisfied with?
 Parallelism in hyperblock

— Especially if memory sequentialized
« Disambiguate memories?
+ Allow multiple memory banks?

* Only one hyperblock active at a time
— Share hardware between blocks?

» Data only used from one side of mux
— Share hardware between sides?

» Most logic in hyperblock idle?
— Couldn’t we pipeline execution?

Penn ESE535 Spring 2015 -- DeHon 4

Preclass

+ Common subgraphs?

* How would we like to
share?
— If trying to avoid slowdown

— If willing to make area-time
tradeoffs?

Penn ESE535 Spring 2015 -- DeHon 5

Subgraph Sharing

+ Can potentially share
identical subgraphs

» Can share similar subgraphs

B

Penn ESE535 Spring 2015 -- DeHon 6

Evaluating Subgraph Sharing

* What do we have to do to share
subgraphs?

* When is it worthwhile?

— How big does graph need to be?
— How much overhead to share?

Penn ESE535 Spring 2015 -- DeHon

Example

Muxes on input to mulitipler
— Probably smaller than two multipliers
—2(Amux)+Ampy < 2(Ampy)
— General
* Area(Amux) ~ O(N)
* Area(Ampy) ~ O(N?)

|| I

VLIW Extreme

» Sketch

— Each basic block requires a
set of operators to achieve
minimum path length

— Union sets over all basic
blocks

* Keep track of max number of
each operator type
— Build VLIW with that
operator set
* Why unsatisfying?

Penn ESE535 Spring 2015 -- DeHon

1

Example

Muxes on inputs to an adder

— Probably bigger than just having two
adders

— 2(Amux) + Aadd > 2(Aadd)

— On FPGA:
* ~LUT per Adder bit
e ~LUT per Mux bit

Extreme Case

« If ignored multiplexing overhead,
what would we get?

— What would we select at the resources and
how connected?

Penn ESE535 Spring 2015 -- DeHon

Favorable Subgraphs

« Particularly beneficial when 1/O into
subgraph small

— Overhead for muxing

proportional to inputs

A B

Penn ESE535 Spring 2015 -- DeHon

Approach

.

Find candidate, reusable
subgraphs—>patterns

» Select a cover set of patterns
» Assign original graph to patterns
— Assess benefits of sharing

Patch together pattern cover with
control and multiplexing

Penn ESE535 Spring 2015 -- DeHon

Terms

» Subgraph + Pattern
— A piece of original — Common (resuable)
computational graph subgraph

+ Want to find small
set of patterns that
can efficiently cover
the original graph

Penn ESE535 Spring 2015 -- DeHon

Approach

Find patterns

» Select a cover set of patterns

» Assign original graph to patterns
— Assess benefits of sharing

Patch together pattern cover with
control and multiplexing

Penn ESE535 Spring 2015 -- DeHon

Find Recurring Patterns

» How might we identify the set of
candidate patterns?

Penn ESE535 Spring 2015 -- DeHon

Finding Subgraphs

» Keep set of subgraphs of size k

» Create subgraphs of size k+1 from
subgraphs of size k
— By adding a neighboring node
« Maybe several such expansions for each k-
subgraph

» Careful: can end up with exponential
subgraphs

Penn ESE535 Spring 2015 -- DeHon

Optimization

» Compute candidate graph patterns

during subgraph generation

— Each subgraph may become a candidate

— Keep track of subgraphs that might match
with candidate patterns

— As add subgraph, compare it with
candidate patterns and add to list if “close’
enough

— At end of a given graph size, prune out
patterns with too few potential matches

Penn ESE535 Spring 2015 -- DeHon

Close enough?

» Conceptually: not too expensive to use
the candidate pattern

» Concretely: compute a distance metric
between graph and pattern
— Minimum cost of edits to morph one graph
into another
« E.g. relabel nodes, remove nodes
— Want to capture potential cost of adding
muxes and control

Penn ESE535 Spring 2015 -- DeHon

Potential Optimization
» Canonicalize subgraphs so recognize

when encounter same subgraph again
— Keep set of subgraphs small

* How might we identify/match
subgraphs?

Penn ESE535 Spring 2015 -- DeHon

21

Algorithm 1 HPR Algorithm
L P — set of discovered patterns
— set of size & subgraph

2§
3: INST(P) — instances of a pattern P
4 lais — edit distance limit

5 leount — frequency limit

6
7: travel all DFGs, add size 1 patterns and instances to P and §;
8: for k —2,N do
9: forall s; € S do

10: adding a neighbor to expand s to sg. |

11 if 5 is the primary subgraph of 51 and convex then

12: caleulate CV(s;;1)

13: set list of patterns 2; s.t. [[CV (P) —CV (sgy1)[l1 < 4%
1415 using LSH

14 calculate edit distance of s, 1 with each P;

15: if d(Pr,Sg1) < g then

16 add sg.41 to INST(P)

17: else

18: create a new pattern based on s 1. add to B

19: end if

20: add s+1 t0 Sg1

21 end if

22: end for
23: for all new pattern P; € P do

24: i [INST (P)| < looune && size(P;) < (k+1—lgist) then
25: remove Z; from P
26: remove INST(P) from Sg;q
27: end if
28: end for
29: end for
Penn ESE535 Spring 2015 -- DeHon [Cong & Jiang | FPGA 2008] 20

Subgraph Canonicalization

(similar to Common Subexpression)
* In topological order (inputs to outputs)
+ Give name for single operator
+ Each node, need name for subgraph rooted at
this node

— Since named/canonicalize all predecessors
* Looking for name for a pattern with same operator at
the output, and the same subgraph on inputs
» Compare existing patterns end with output operator
—Hash operator+inputs = only check things that
match hash

—Match = use that name, else allocate name
Penn ESE535 Spring 2015 -- DeHon

22

Subgraph Canonicalization

* Problem
— Matches partial
patterns from inputs
— Not match partial
pattern omit part of
inputs

Penn ESE535 Spring 2015 -- DeHon

23

Subgraph Canonicalization

* Problem
— Matches partial patterns from inputs
— Not match partial pattern omit part of inputs

* Approach
— Also create/name patterns at each node
with a subset of the inputs
— Means each node has multiple pattern
candidates (could explode here
input input A B

T/

mpm input

Penn ESE535 Spring 2015

Cover Subgraphs

» One have candidate patterns, need to
cover the original graph.

* What’s our goal?
— (cost function)

Penn ESE535 Spring 2015 -- DeHon

25

Cover Subgraph

» Given a proposed set of pattern graphs,
how can we cover?

Penn ESE535 Spring 2015 -- DeHon

27

Greedy Cover Subgraph

* How might we cover greedily?

Penn ESE535 Spring 2015 -- DeHon

29

Cover Goal

¢ Minimize area

N A(p) +, Ause(p € P)

* Minimum added latency
— Delay of BB covered by pin P
* Minimize energy?

Penn ESE535 Spring 2015 -- DeHon

26

Cover Subgraph

» How many sets if we explored them all?

Penn ESE535 Spring 2015 -- DeHon

28

Greedy Cover Subgraph

» Select “most beneficial” pattern
» Assign it to the stuff it covers
— Add logic to share accommodate

— Remove those as things that need to be
covered

» Repeat until all covered or no benefit

Penn ESE535 Spring 2015 -- DeHon

30

Most Beneficial Pattern

» How would we define pattern benefit?

Penn ESE535 Spring 2015 -- DeHon 31

Beneficial Pattern

* N — number of patterns can apply to
* Area: save muxes inside pattern

N * (mux(io) + mux(inside)) + area(P)

N * mux(io) + area(P)

» Latency: prefer parallel (low depth)
1Pl

latency(P)

Penn ESE535 Spring 2015 -- DeHon

[Cong & Jiang / FPGA 2008]

32

Pattern and Graph Statistics

Size | #Subgraph | #Pattern | #Inst | #Calc
2 62 3 62 | 096
3 108 12 108 | 108 Z(V:le .
4 195 20 161 | 148 g
5 366 26 248 | 149 | numberof
6 701 35 404 19 edit-distance
7 1357 58 579 26 calculations
8 2533 76 714 | 3.8 | persubgraph
9 4517 86 762 | 3.82 | match
10 7800 94 793 | 443
11 13112 101 668 | 7.04
12 21365 73 348 | 7.89
13 33316 32 87 5.03
14 49040 3 6 17
Penn ESE535 Spring 2015 -- DeHon [Cong & Jiang /| FPGA 2008] 33

Energy Impact?

* What are the energy impacts of
sharing?

Penn ESE535 Spring 2015 -- DeHon

34

Big Ideas:

» Sharing

» Estimation

» Techniques
— Graph Matching
— Covering
— Greedy

Penn ESE535 Spring 2015 -- DeHon 35

Admin

* Project Formulation Proposal Due
Thursday

— Office Hours or schedule time if want to
discuss

» Reading for Wednesday online

Penn ESE535 Spring 2015 -- DeHon

36

