
1

Penn ESE535 Spring 2015 -- DeHon 1

ESE535:
Electronic Design Automation

Day 17: March 30, 2015
High Level Synthesis II
Dataflow Graph Sharing

Penn ESE535 Spring 2015 -- DeHon 2

Today

Sharing
•  Dataflow subgraph

– Pattern identification
– Pattern selection

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Sharing
Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2015 -- DeHon 3

Flow Review

Penn ESE535 Spring 2015 -- DeHon 4

Additional Concerns?
What are we still not satisfied with?
•  Parallelism in hyperblock

–  Especially if memory sequentialized
•  Disambiguate memories?
•  Allow multiple memory banks?

•  Only one hyperblock active at a time
–  Share hardware between blocks?

•  Data only used from one side of mux
–  Share hardware between sides?

•  Most logic in hyperblock idle?
–  Couldn’t we pipeline execution?

Preclass

•  Common subgraphs?
•  How would we like to

share?
–  If trying to avoid slowdown
–  If willing to make area-time

tradeoffs?

Penn ESE535 Spring 2015 -- DeHon 5

Subgraph Sharing

•  Can potentially share
identical subgraphs

•  Can share similar subgraphs

Penn ESE535 Spring 2015 -- DeHon 6

2

Evaluating Subgraph Sharing

•  What do we have to do to share
subgraphs?

•  When is it worthwhile?
– How big does graph need to be?
– How much overhead to share?

Penn ESE535 Spring 2015 -- DeHon 7

Example
•  Muxes on inputs to an adder

– Probably bigger than just having two
adders

– 2(Amux) + Aadd > 2(Aadd)
– On FPGA:

•  ~LUT per Adder bit
•  ~LUT per Mux bit

Penn ESE535 Spring 2015 -- DeHon 8

Example
•  Muxes on input to mulitipler

– Probably smaller than two multipliers
– 2(Amux)+Ampy < 2(Ampy)
– General

•  Area(Amux) ~ O(N)
•  Area(Ampy) ~ O(N2)

Penn ESE535 Spring 2015 -- DeHon 9

Extreme Case

•  If ignored multiplexing overhead,
what would we get?
– What would we select at the resources and

how connected?

Penn ESE535 Spring 2015 -- DeHon 10

VLIW Extreme

•  Sketch
– Each basic block requires a

set of operators to achieve
minimum path length

– Union sets over all basic
blocks
•  Keep track of max number of

each operator type
– Build VLIW with that

operator set
•  Why unsatisfying?

Penn ESE535 Spring 2015 -- DeHon 11

+ X X

Favorable Subgraphs
•  Particularly beneficial when I/O into

subgraph small
– Overhead for muxing

proportional to inputs

Penn ESE535 Spring 2015 -- DeHon 12

3

Approach

•  Find candidate, reusable
subgraphspatterns

•  Select a cover set of patterns
•  Assign original graph to patterns

– Assess benefits of sharing
•  Patch together pattern cover with

control and multiplexing

Penn ESE535 Spring 2015 -- DeHon 13

Terms

•  Subgraph
–  A piece of original

computational graph

•  Pattern
–  Common (resuable)

subgraph

•  Want to find small
set of patterns that
can efficiently cover
the original graph

Penn ESE535 Spring 2015 -- DeHon 14

Approach

•  Find patterns
•  Select a cover set of patterns
•  Assign original graph to patterns

– Assess benefits of sharing
•  Patch together pattern cover with

control and multiplexing

Penn ESE535 Spring 2015 -- DeHon 15

Find Recurring Patterns

•  How might we identify the set of
candidate patterns?

Penn ESE535 Spring 2015 -- DeHon 16

Finding Subgraphs

•  Keep set of subgraphs of size k
•  Create subgraphs of size k+1 from

subgraphs of size k
– By adding a neighboring node

•  Maybe several such expansions for each k-
subgraph

•  Careful: can end up with exponential
subgraphs

Penn ESE535 Spring 2015 -- DeHon 17

Optimization

•  Compute candidate graph patterns
during subgraph generation
– Each subgraph may become a candidate
– Keep track of subgraphs that might match

with candidate patterns
– As add subgraph, compare it with

candidate patterns and add to list if “close”
enough

– At end of a given graph size, prune out
patterns with too few potential matches

Penn ESE535 Spring 2015 -- DeHon 18

4

Close enough?

•  Conceptually: not too expensive to use
the candidate pattern

•  Concretely: compute a distance metric
between graph and pattern
– Minimum cost of edits to morph one graph

into another
•  E.g. relabel nodes, remove nodes

– Want to capture potential cost of adding
muxes and control

Penn ESE535 Spring 2015 -- DeHon 19 Penn ESE535 Spring 2015 -- DeHon 20 [Cong & Jiang / FPGA 2008]

Potential Optimization

•  Canonicalize subgraphs so recognize
when encounter same subgraph again
– Keep set of subgraphs small

•  How might we identify/match
subgraphs?

Penn ESE535 Spring 2015 -- DeHon 21

Subgraph Canonicalization
(similar to Common Subexpression)

•  In topological order (inputs to outputs)
•  Give name for single operator
•  Each node, need name for subgraph rooted at

this node
– Since named/canonicalize all predecessors

•  Looking for name for a pattern with same operator at
the output, and the same subgraph on inputs

•  Compare existing patterns end with output operator
– Hash operator+inputs only check things that

match hash
– Match use that name, else allocate name

Penn ESE535 Spring 2015 -- DeHon 22

Subgraph Canonicalization

•  Problem
–  Matches partial

patterns from inputs
–  Not match partial

pattern omit part of
inputs

Penn ESE535 Spring 2015 -- DeHon 23

Subgraph Canonicalization
•  Problem

– Matches partial patterns from inputs
– Not match partial pattern omit part of inputs

•  Approach
– Also create/name patterns at each node

with a subset of the inputs
– Means each node has multiple pattern

candidates (could explode here)

Penn ESE535 Spring 2015 -- DeHon 24

5

Cover Subgraphs

•  One have candidate patterns, need to
cover the original graph.

•  What’s our goal?
–  (cost function)

Penn ESE535 Spring 2015 -- DeHon 25

Cover Goal

•  Minimize area

•  Minimum added latency
– Delay of BB covered by p in P

•  Minimize energy?

Penn ESE535 Spring 2015 -- DeHon 26

€

A(p) +
P
∑ Ause(p∈P)

BB
∑

Cover Subgraph

•  Given a proposed set of pattern graphs,
how can we cover?

Penn ESE535 Spring 2015 -- DeHon 27

Cover Subgraph

•  How many sets if we explored them all?

Penn ESE535 Spring 2015 -- DeHon 28

Greedy Cover Subgraph

•  How might we cover greedily?

Penn ESE535 Spring 2015 -- DeHon 29

Greedy Cover Subgraph

•  Select “most beneficial” pattern
•  Assign it to the stuff it covers

– Add logic to share accommodate
– Remove those as things that need to be

covered
•  Repeat until all covered or no benefit

Penn ESE535 Spring 2015 -- DeHon 30

6

Most Beneficial Pattern

•  How would we define pattern benefit?

Penn ESE535 Spring 2015 -- DeHon 31

Beneficial Pattern

•  N – number of patterns can apply to
•  Area: save muxes inside pattern

•  Latency: prefer parallel (low depth)

Penn ESE535 Spring 2015 -- DeHon 32

€

|P |
latency(P)

€

N * (mux(io) +mux(inside))+ area(P)
N *mux(io) + area(P)

[Cong & Jiang / FPGA 2008]

Pattern and Graph Statistics

Penn ESE535 Spring 2015 -- DeHon 33 [Cong & Jiang / FPGA 2008]

#Calc –
Average
number of
edit-distance
calculations
per subgraph
match

Energy Impact?

•  What are the energy impacts of
sharing?

Penn ESE535 Spring 2015 -- DeHon 34

Penn ESE535 Spring 2015 -- DeHon 35

Big Ideas:

•  Sharing
•  Estimation
•  Techniques

– Graph Matching
– Covering
– Greedy

Penn ESE535 Spring 2015 -- DeHon 36

Admin

•  Project Formulation Proposal Due
Thursday
– Office Hours or schedule time if want to

discuss
•  Reading for Wednesday online

