
1

Penn ESE 535 Spring 2015 -- DeHon
1

ESE535:
Electronic Design Automation

Day 18: April 1, 2015
Modern SAT Solvers

({z}Chaff, GRASP, miniSAT)

Penn ESE 535 Spring 2015 -- DeHon
2

Today

•  SAT
•  Pruning Search
•  Davis-Putnam
•  Data Structures
•  Optimizations

–  Watch2
–  VSIDS
–  ?restarts

•  Learning (time permit)

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE 535 Spring 2015 -- DeHon
3

Problem (almost)

•  SAT: Boolean Satisfiability
•  Given: logical formula g
•  Find a set of variable assignments that

makes g true
•  Or conclude no such assignment exists

Example Uses
•  Can I find an assignment that causes

this output to become true, false?
– Automatic Test Pattern Generation (ATPG)
– Static Timing Analysis (false paths)

•  Verification
–  Is this optimized logic the same as the

specification logic?
•  Provisioning/Scheduling
•  Partitioning, Placement, Routing
•  FSM Encoding

Penn ESE 535 Spring 2015 -- DeHon
4

Preclass

•  Satisfying assignment for 1?

•  Satisfying assignment for 2?

Penn ESE 535 Spring 2015 -- DeHon
5

Penn ESE 535 Spring 2015 -- DeHon
6

Problem (more precise)

•  SAT: Boolean Satisfiability
•  Given: logical formula g in CNF
•  Find a set of variable assignments that

makes g true
•  Or conclude no such assignment exists

2

Penn ESE 535 Spring 2015 -- DeHon
7

CNF

•  Conjunctive Normal Form
•  Logical AND of a set of clauses

– Product of sums
•  Clauses: logical OR of a set of literals
•  Literal: a variable or its complement
•  E.g.

 (A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2015 -- DeHon
8

CNF

•  Conjunctive Normal Form
•  Logical AND of a set of clauses
•  To be satisfied:

– Every clause must be made true

•  (A+B+/C)*(/B+D)*(C+/A+/E)
– If know D=false

 B must be false

Penn ESE 535 Spring 2015 -- DeHon
9

3-SAT Universal

•  Can express any set of boolean
constraints in CNF with at most 3 literals
per clause

•  Canonical NP-complete problem

Penn ESE 535 Spring 2015 -- DeHon
10

Convert to 3-SAT
•  A=/B*/C=/(B+C) universal primitive

–  We know can build any logic expression from nor2
•  3-CNF for A=/B*/C

–  (A+B+C)*(/A+/B)*(/A+/C)
•  If (B==0 && C==0) then A=1
•  If (B==1 || C==1) then A=0

•  To convert any boolean formula to 3-CNF:
1.  Convert to nor2’s

–  Or norX if not limited to 3-CNF formulas
2.  Then use above to convert nor2 expressions to set of

clauses
3.  Combine (conjunct=AND) the clauses resulting from all

the nor’s

3-SAT Universal

•  Point of conversion to 3-SAT
– simply to show that the problem hardness

doesn’t change for clauses of any size
larger than 3-SAT

–  (2-SAT is an easier problem)
•  We will work directly with larger clauses

Penn ESE 535 Spring 2015 -- DeHon
11

Penn ESE 535 Spring 2015 -- DeHon
12

Brute Force Exhaustive

•  How could we find satisfying
assignment?

•  How long would it take?
– With N binary variables

3

Penn ESE 535 Spring 2015 -- DeHon
13

Search Formulation

•  Think of as search
tree on variables

•  Each variable can
be true or false
–  Branch on values

•  All variables
determined at
leaves of tree

C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
14

Key Trick

•  Avoid searching
down to leaf on all
subtrees

•  “Prune” away
branches of tree C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
15

Key Trick

•  (A+B+C)*(/A+/B)*(/A+/C)
•  Consider A=1

C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
16

Key Trick

•  (A+B+C)*(/A+/B)*(/A+/C)
•  Consider A=1
•  In this subtree becomes

 /B*/C C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
17

Key Trick

•  (A+B+C)*(/A+/B)*(/A+/C)
•  Consider A=1
•  In this subtree becomes

 /B*/C

•  Consider B=1
C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
18

Key Trick

•  (A+B+C)*(/A+/B)*(/A+/C)
•  Consider A=1
•  In this subtree becomes

 /B*/C
•  Consider B=1

–  Becomes false
–  Regardless of C
–  Don’t need to explore tree

further

C

B

C C C

A

B

0 1

0 1

0 1

4

Penn ESE 535 Spring 2015 -- DeHon
19

Key Trick
•  (A+B+C)*(/A+/B)*(/A+/C)
•  Consider A=1
•  In this subtree becomes

 /B*/C

•  Implication
–  When there is only one literal

left in a clause
–  Can conclude it must be true
–  Select it and prune other

branch

C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
20

Key Trick
•  (…)*B*/B*(…)
•  Contradiction

–  If implications lead to a
conflicting assignments

–  Can conclude this subtree is
unsatisfiable

–  Prune branch
C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
21

Prospect
•  Use implications and

contradictions to prune
subtrees and avoid visiting
full space

C

B

C C C

A

B

0 1

0 1

0 1

Penn ESE 535 Spring 2015 -- DeHon
22

Pruning Search

•  Solve with pruning search
– Pick an unassigned variable
– Branch on true/false
– Compute implications

(A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2015 -- DeHon
23

Davis-Putnam

while (true) {
 if (!decide()) // no unassigned vars
 return(satisfiable);
 while (!bcp()) { // constraint propagation
 if (!resolveConflict()) // backtrack
 return(not satisfiable);
 }
}

Penn ESE 535 Spring 2015 -- DeHon
24

decide()
•  Picks an unassigned

variable
•  Gives it a value
•  Push on decision stack

– Efficient structure for depth-
first search tree

(A+B+/C)*(/B+D)*(C+/A+/E)

5

Penn ESE 535 Spring 2015 -- DeHon
25

Data Structures

•  Decision “stack”
•  Variable “array”
•  Clause “DB”

– Each clause is a set of variables

(A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2015 -- DeHon
26

bcp
(boolean constraint propagation)

•  What do we need to do on each variable
assignment?
– Find implications

•  Implication when all other literals in a clause are false
•  Look through all clauses this assignment effects
•  See if any now have all false and one unassigned

– Assign implied values
– Propagate that assignment
– Conflict if get implications for true and false

Penn ESE 535 Spring 2015 -- DeHon
27

bcp()
•  Q=new queue();
•  Q.insert(top of decision stack);
•  while (!Q.empty())

–  V=Q.pop();
–  For each clause C in DB with V

•  If C now satisfied, mark as such (remove from DB)
•  If C has one unassigned literal, rest false

–  Vnew=unassigned literal in C
–  val=value Vnew must take
–  If (Vnew assigned to value other than val)

»  return (false); // conflict
– Q.add(Vnew=val);

•  return(true)
Penn ESE 535 Spring 2015 -- DeHon

28

Variable Array

•  Each variable has a list pointing to all
clauses in which it appears?
– Avoid need to look at every clause

(A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2015 -- DeHon
29

Tracking Implications

•  Each implication made at
some tree level
–  Associated with some

entry on decision stack
–  Has associated decision

stack height
•  On backtrack

–  Unassign implications
above changed decision
level

(A+B+/C)*(/B+D)*(C+/A+/E)

Penn ESE 535 Spring 2015 -- DeHon
30

Track Variable Assignment
•  Each clause has counter

– Count number of unassigned literals
– Decrement when assign false literal
– Mark clause as satisfied when assign true

literal (remove from clause database?)

6

Penn ESE 535 Spring 2015 -- DeHon
31

Track Variable Assignment
•  Each clause has

counter
–  Count number of

unassigned literals
–  Decrement when

assign false literal
–  Mark clause as

satisfied when assign
true literal (remove
from clause
database?)

Penn ESE 535 Spring 2015 -- DeHon
32

Track Variable Assignment
•  Each clause has counter

–  Count number of unassigned literals
–  Decrement when assign false literal
–  Mark clause as satisfied when assign true literal
–  Counter avoids need to check all variable

assignments in clause on every assignment
–  Watch for counter decrement 21

•  That’s when a literal is implied.

Penn ESE 535 Spring 2015 -- DeHon
33

resolveConflict()
•  What does resolveConflict need to do?

–  Look at most recent decision
–  If can go other way, switch value

•  (clear implications to this depth)
–  Else pop and recurse on previous decision
–  If pop top decision,

•  Unsatisfiable

•  Alternates:
– Treat literals separately

•  Unassign and pick another literal
– Learning (later in lecture)

•  May allow more direct backtracking
Penn ESE 535 Spring 2015 -- DeHon

34

Chaff Optimizations

Penn ESE 535 Spring 2015 -- DeHon
35

How will this perform?

•  10,000’s of variables
•  100,000’s of clauses (millions)
•  Every assignment walks to the clause

database
•  Cache performance?
•  How big is L1 cache? L2 cache?
•  Ratio of main-memory speed to L1

cache speed?

Penn ESE 535 Spring 2015 -- DeHon
36

Challenge 1

•  Currently, visit every clause on each
assignment
– Clause with K variables
– Visited K-1 times
– K-2 of which just to discover it’s not the last

•  Can we avoid visiting every clause on
every assignment?
– Every clause in which a variable appears?

7

Penn ESE 535 Spring 2015 -- DeHon
37

Avoiding Clause Visits
•  Idea: watch only 2 variables in each

clause
•  Only care about final set of next to last

variable
•  If set other k-2, won’t force an implication
•  When set one of these (and everything

else set)
– Then we have an implication

Penn ESE 535 Spring 2015 -- DeHon
38

Watch 2 Data Structure

Penn ESE 535 Spring 2015 -- DeHon
39

Avoiding Clause Visits
•  Idea: watch only 2 variables in each

clause
•  Only care about final set of next to last

variable
•  What if we set one of these two “watched”

variables?
–  If not last, change the watch to one of the

unset variables

Penn ESE 535 Spring 2015 -- DeHon
40

Watch 2

•  If watched literal becomes false
– Check if any non-watched true
– Check if all non-watched are set

•  if so, set implication on other watched
• else, update watch literal

Review
Watch 2 Cases

What do in each case?
•  Set variable true (any)
•  Set variable false

– Non-watched
– Watched

•  There is an undetermined,
non-watched variable

•  There is no undetermined,
non-watched variable

Penn ESE 535 Spring 2015 -- DeHon
41

Penn ESE 535 Spring 2015 -- DeHon
42

Note

•  Watch pair is arbitrary
•  Unassigning a variable (during

backtrack)
– Does not require reset of watch set
– Constant time to “unset” a variable

8

Penn ESE 535 Spring 2015 -- DeHon
43

Challenge 2: Variable Ordering

•  How do we decide() which variable to
use next?
– Want to pick one that facilitates lots of

pruning

Penn ESE 535 Spring 2015 -- DeHon
44

Variable Ordering

•  Old Ideas:
– Random
–  (DLIS) Dynamic largest individual sum

•  Used most frequently in unresolved clauses
•  Potential weakness:

– Must re-sort with every variable assignment?

– …none clearly superior
•  DLIS competitive
•  Rand good on CAD benchmarks?

Penn ESE 535 Spring 2015 -- DeHon
45

New: VSIDS

•  Variable State Independent Decaying
Sum
– Each literal has a counter
– When clause added to DB, increment

counter for each literal
– Select unassigned literal with highest count
– Periodically, all counters are divided by a

constant

Penn ESE 535 Spring 2015 -- DeHon
46

New: VSIDS

•  Variable State Independent Decaying
Sum
–  Each literal has a counter
– When clause added to DB, increment

counter for each literal
•  Remove clauses when satisfied?
•  Reinsert on backtrack

–  Select unassigned literal with highest count
–  Periodically, all counters are divided by a constant

Penn ESE 535 Spring 2015 -- DeHon
47

New: VSIDS

•  Variable State Independent Decaying
Sum
–  Each literal has a counter
–  When clause added to DB, increment counter for

each literal
– Select unassigned literal with highest count

•  Don’t need to re-sort each selection
•  Only re-sort on backtrack
•  Maybe priority queue insert?

–  Periodically, all counters are divided by a constant
Penn ESE 535 Spring 2015 -- DeHon

48

VSIDS

•  Goal: satisfy recent conflict clauses
•  Decaying sum weights things being

added
– Clauses not conflicting for a while, have

values reduced
•  (? Avoid walking through them by increasing

weight on new stuff rather than decreasing all
old?)

•  Impact: order of magnitude speedup

9

Penn ESE 535 Spring 2015 -- DeHon
49

Restarts

•  Periodically restart
– Clearing the state of all variables

•  i.e. clear decision stack
– Leave clauses in clause database

•  ? Keep ordering based on recent costs
•  ? Re-insert clauses must reinsert on restart?

– State of clause database drives variable
ordering
•  Benefit: new variable ordering based on

lessons of previous search
Penn ESE 535 Spring 2015 -- DeHon

50

Overall

•  Two orders of magnitude benefit on
unsatisfiable instances

•  One order of magnitude on satisfiable
instances

Penn ESE 535 Spring 2015 -- DeHon
51

Learning

(time permitting)

Penn ESE 535 Spring 2015 -- DeHon
52

Learning

•  When encounter a conflict
– Determine variable assignment contributing

to conflict
– Add new clause to database

•  New clause allows pruning

Penn ESE 535 Spring 2015 -- DeHon
53

Davis-Putnam w/ Learning

while (true) {
 if (!decide()) // no unassigned vars
 return(satisfiable);
 while (!bcp()) { // constraint propagation
 analyzeConflicts(); // learning
 if (!resolveConflict()) // backtrack
 return(not satisfiable);
 }
}

Penn ESE 535 Spring 2015 -- DeHon
54

Implication Graph

•  As perform bcp propagation
– When set variable, insert back link to

previous variable set forcing this variable
set

– Graph captures what this implication
depends upon

•  When encounter a conflict
–  Identify what variable values caused

10

Penn ESE 535 Spring 2015 -- DeHon
55

Example

Marques-Silva/Sakallah TRCOMP v48n5p506 1999
Penn ESE 535 Spring 2015 -- DeHon

56

Conflict Resolution

•  x1 & /x9 & /x10 & /x11 lead to conflict
•  /(x1 & /x9 & /x10 & /x11)
•  /x1+x9+x10+x11 new clause for DB

Penn ESE 535 Spring 2015 -- DeHon
57

New Clause

• New clause
does not include
x12, x13
• May encounter
this case again

/x1+x9+x10+x11 new clause for DB
Penn ESE 535 Spring 2015 -- DeHon

58

More Implications

•  x4 & /x10 & /x11 lead to conflict
•  /x4+x10+x11 new clause for DB
•  Also (/x1+x9+x4) since x1*/x9 x4

Penn ESE 535 Spring 2015 -- DeHon
59

New Clauses

• /x4+x10+x11
• Doesn’t
depend on x9

• (/x1+x9+x4)
• x4 not in
decision tree

• Will be useful
for later pruning

Penn ESE 535 Spring 2015 -- DeHon
60

Unique Implication Point

•  UIP = vetext that dominates verticies leading to
conflict
–  x1 is UIP (decision variable causing is always a UIP)
–  x4 is UIP

11

Penn ESE 535 Spring 2015 -- DeHon
61

Clause Tradeoff

•  Adding clauses facilitates implications
–  Increases pruning
– Must make less decisions

•  Adding clauses increases size of clause
database
–  Increases memory
– Could add exponential clauses
– Forces more work to push implications

Penn ESE 535 Spring 2015 -- DeHon
62

Learned Clauses

•  Runtime = Decisions * ImplicationTime
–  Decisions decreasing
–  Implication Time increasing

•  Starting from 0 learned clauses,
–  Net decrease in runtime

•  Eventually, Implication Time too large and slows
down

•  Optimum with limited number of learned clauses

Penn ESE 535 Spring 2015 -- DeHon
63

Limiting Learned Clauses

•  Filter out dominated clauses
•  Keep smaller clauses (fewer literals)

–  Have most relevance
•  zChaff study suggest inserting only UIP

closest to conflict [Zhang et al., ICCAD2001]
•  Treat like cache and evict learned clauses

–  Use activity statistics as with variables so keep
most useful clauses [minisat 1.2]

Penn ESE 535 Spring 2015 -- DeHon
64

(Recall) Restarts

•  Periodically restart
– Clearing the state of all variables

•  i.e. clear decision stack
– Leave clauses in clause database
– State of clause database drives variable

ordering
•  Benefit: new variable ordering based on

lessons of previous search

Penn ESE 535 Spring 2015 -- DeHon
65

Impact of Learning

•  zChaff [ICCAD2001] showed 2x
improvement based on tuning the
learning scheme

•  Learning can be orders of magnitude
benefit

Penn ESE 535 Spring 2015 -- DeHon
66

Impact of Learning

Marques-Silva/Sakallah TRCOMP v48n5p506 1999

12

Penn ESE 535 Spring 2015 -- DeHon
67

Big Ideas

•  Technique: SAT
•  Exploit Structure

– Constraint propagation
– Pruning search technique
– Learning (discover structure)

•  Constants matter
– Exploit hierarchy in modern memory

systems

Penn ESE 535 Spring 2015 -- DeHon
68

Admin

•  Project Formulation Proposals –
Thursday

•  Reading for Monday on Canvas

