ESE535: Electronic Design Automation

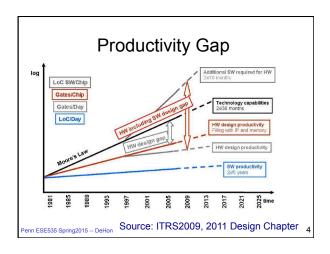
Day 1: January 14, 2015 Introduction

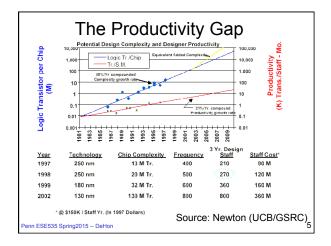
Complete questionnaire

Penn ESE535 Spring2015 -- DeHon

Warmup Poll

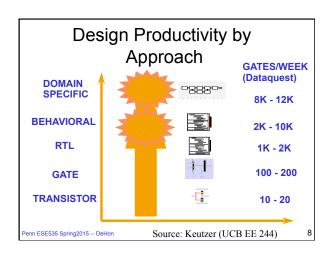
- · How many of you have:
 - Drawn geometry for transistors and wires
 - Sized transistors
 - Placed logic and/or memory cells
 - Selected the individual gates
 - Specified the bit encoding for an FSM
 - Designed a bit-slice for an Adder or ALU
 - Written RTL Verilog or VHDL
 - Written Behavioral Verilog, VHDL, etc. and compiled to hardware?
 - Written SystemC or Bluespec System Verilog?
 - Compiled C to gates?

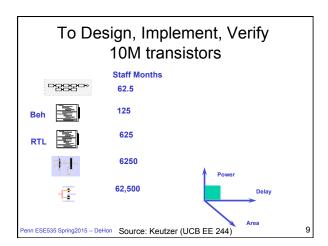

Penn ESE535 Spring2015 -- DeHon


.

Modern Design Challenge

- How do we design modern computational systems?
 - billions of devices
 - used in everything
 - billion dollar businesses
 - rapidly advancing technology
 - more "effects" to address
 - rapidly developing applications and uses
 - short product cycles
 - extreme time-to-market pressures


Penn ESE535 Spring2015 -- DeHon



Bottleneck Human brain power is the bottleneck to producing new designs to creating new things (applications of technology) to making money

Avoiding the Bottleneck • How do we unburden the human? - Take details away from him/her • raise the level of abstraction at which human specifies computation - Pick up the slack • machine take over the details

Central Questions How do we make the machine fill in the details (elaborate the design)? How well can it solve this problem? How fast can it solve this problem?

Outline

- · Intro/Setup
- Instructor

Penn ESE535 Spring2015 -- DeHon

- · The Problem
- · Decomposition
- Costs
- Not Solved
- · This Class

Penn ESE535 Spring2015 -- DeHon

Instructor

- VLSI/CAD user + Novel Tech. consumer
 - Architect, Computer Designer

enn ESE535 Spring2015 -- DeHon

- Spatial designs: FPGAs, Reconfigurable
- Hybrid: Multicontext FPGAs, P+FPGA
- Nanoscale: CNT, NW-based, NEMS
- Avoid tedium (impatient)
- Analyze Architectures
 - necessary to explore

11

- costs different (esp. in new technologies)
- Mapping as part of runtime?
 - Variation, wear, reliability, changing dataset??
- Requirements of Computation

Problem

- Map from a problem specification down to an efficient implementation on a particular computational substrate.
- · What is
 - a specification
 - a substrate
 - have to do during mapping

enn ESE535 Spring2015 - DeHon

Problem: Specification

- · Recall: basic tenant of CS theory
 - we can specify computations precisely
 - Universal languages/building blocks exist
 - · Turing machines
 - · nand gates
- EEs:
 - Can build any function out of nand gates
 - Any FSM out of gates + registers
 - FSM = Finite State Machine

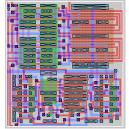
nn ESE535 Spring2015 -- DeHon

Specifications

- netlist
- logic gates
- · Finite-State Machine (FSM)
- programming language
 - C, C++, Lisp, Java, block diagram
- DSL (domain specific) - MATLAB, Snort
- RTL
 - Register Transfer
 - (e.g. subsets of Verilog, VHDL)
- behavioral
- dataflow graph
- layout
- · SPICE netlist

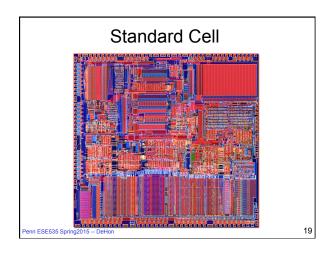
enn ESE535 Spring2015 -- DeHon

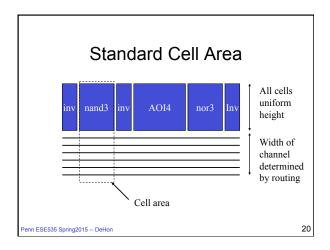
15

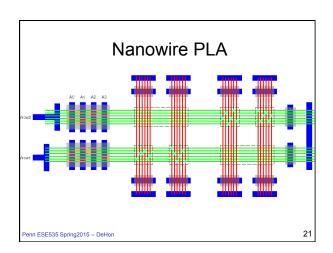

Substrate

- Standard cell
- metal-only gate-array
- · Processor (scalar, VLIW, Vector)
- Array of Processors (SoC, {multi,many}core)
- · billiard balls
- Nanowire PLA
- · molecules
- DNA

nn ESE535 Spring2015 -- DeHon


Full Custom

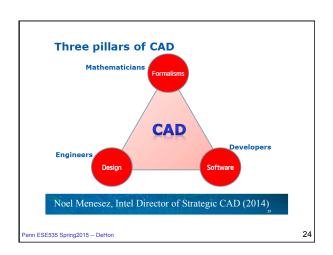

- · Get to define all layers
- · Use any geometry you like
- · Only rules are process design rules
- ESE570

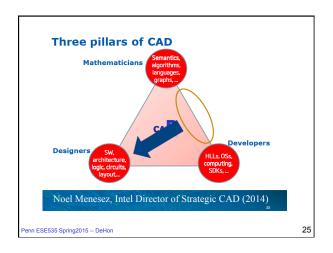


enn ESE535 Spring2015 -- DeHon

FPGA K-LUT (typical k=4) Compute block w/ optional output Flip-Flop ESE171, CIS371 nn ESE535 Spring2015 -- DeHon

What are we throwing away? (what does mapping have to recover?) · layout · Cycle-by-cycle · TR level circuits timing · logic gates / netlist Operation sequencing FSM · How task · Allocation of implemented functional units and DSL: MATLAB assignment enn ESE535 Spring2015 -- DeHon 22

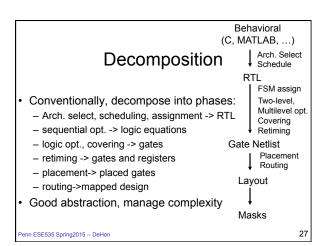

Specification not Optimal


- Y = a*b*c + a*b*/c + /a*b*c
- Multiple representations with the same semantics (computational meaning)
- Only have to implement the semantics, not the "unimportant" detail

23

• Exploit freedom to make

Penn ESE535 Spring2015 -- DeHon smaller/faster/cooler



Problem Revisited

- Map from some "higher" level down to substrate
- · Fill in details:
 - device sizing, placement, wiring, circuits, gate or functional-unit mapping, timing, encoding, data movement, scheduling, resource sharing

Penn ESE535 Spring2015 -- DeHon

26

Easy once decomposed?

· All steps are (in general) NP-hard.

– routing NP-hard:

placement
 Can verify solution in polytime

partitioningN, N², N¹⁰⁰

covering
 Do not know how to find in polytime

- logic optimization only known e^N

- scheduling if there were a polytime solution then P=NP

What do we do about NP-hard problems?

Return to this problem in a few slides...

- Return to this problem in a few slides.

Penn ESE535 Spring2015 -- DeHon

28

Decomposition

- + Easier to solve
 - only worry about one problem at a time
- + Less computational work
 - smaller problem size
- Abstraction hides important objectives
 - solving 2 problems optimally in sequence often not give optimal result of simultaneous solution

Penn ESE535 Spring2015 -- DeHon

29

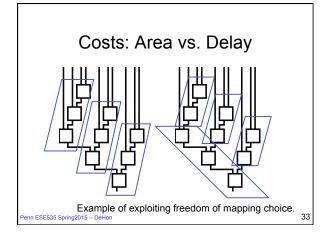
Mapping and Decomposition

- · Two important things to get back to
 - disentangling problems
 - coping with NP-hardness

Penn ESE535 Spring2015 -- DeHon

Costs

- Once get (preserve) semantics, trying to minimize the cost of the implementation.
 - Otherwise this would be trivial
 - (none of the problems would be NP-hard)
- · What costs?
- Typically: EDA [:-)]
 - Energy
 - Delay (worst-case, expected....)
- Future
 - Yield
 - Reliability
 - Operational Lifetime


enn ESE535 Spring2015 -- DeHon

Costs

- · Different cost critera (e.g. E,D,A)
 - behave differently under transformations
 - lead to tradeoffs among them
 - [LUT cover example next slide]
 - even have different optimality/hardness
 - e.g. optimally solve delay covering in poly time, but not area mapping
 - E.g. covering

enn ESE535 Spring2015 -- DeHon

32

Costs

- · Cannot, generally, solve a problem independent of costs
 - costs define what is "optimal"
 - e.g.
 - (A+B)+C vs. A+(B+C)
 - · [cost=pob. Gate output is high]
 - A,B,C independent
 - P(A)=P(B)=0.5, P(C)=0.01
 - P(A)=0.1, P(B)=P(C)=0.5

nn ESE535 Spring2015 -- DeHon

Costs may also simplify problem

- · Often one cost dominates
 - Allow/supports decomposition
 - Solve dominant problem/effect first (optimally)
 - Cost of other affects negligible
 - · total solution can't be far from optimal
 - e.g.
 - · Delay in gates,
 - · Delay in wires
 - Require: formulate problem around relative costs
- · Simplify problem at cost of generality

enn ESE535 Spring2015 - DeHon

35

Coping with NP-hard **Problems**

How do we cope with?

- · simpler sub-problem based on dominant cost or special problem structure
- problems exhibit structure
 - optimal solutions found in reasonable time in practice
- approximation algorithms
 - Can get within some bound of optimum
- · heuristic solutions
- high density of good/reasonable solutions?
- Try many ... filter for good ones
- makes it a highly experimental discipline

Not a solved problem

Why need to study - not just buy tool from C, M, or S?

- NP-hard problems
 - almost always solved in suboptimal manner
 - or for particular special cases
- decomposed in suboptimal ways
- quality of solution changes as dominant costs change
- ...and relative costs are changing!

new effects and mapping problems crop up with new architectures, substrates

Penn ESE535 Spring2015 -- DeHon

37

Big Challenge

- · Rich, challenging, exciting space
- · Great value
 - practical
 - theoretical
- Worth vigorous study
 - fundamental/academic
 - pragmatic/commercial

Penn ESE535 Spring2015 -- DeHon

38

This Class: Student Outcomes

- · You will learn:
 - Freedom exists in design mappings and how to exploit
 - Formulate & abstract optimization problems
 - How to decompose large problems
 - Techniques for attacking these problems
 - Traditional design objectives (e.g. E,D,A, map time.)
 - Canonical representations for problems
 - Evaluate the quality of a design mapping
 - Implement design automation algorithms

Penn ESE535 Spring2015 -- DeHon

39

This Class: Technique Toolkit

- · Dynamic Programming
- · Linear Programming (LP, ILP)
- · Graph Algorithms
- · Greedy Algorithms
- Randomization
- · Search
- · Heuristics
- · Approximation Algorithms
- SAT

Penn ESE535 Spring2015 -- DeHon

40

This Class: Decomposition

- · Provisioning
- Scheduling
- · Logic Optimization
- · Covering/gate-mapping
- Partitioning
- Placement
- Routing

 enn ESE535 Spring2015 DeHon

Two-level,
Multilevel opt.
Covering
Retirning
Gate Netlist
Placement
Routing
Layout
Masks

Behavioral

(C, MATLAB, ...)

Arch. Select

RTL

Schedule

FSM assign

Student Requirements

- Reading
- Class
- · Projects
 - Will involve programming algorithms
 - Roughly weekly
 - Cumulative build toward an overall mapping goal
 - Choose what you do for final piece
 - · Last month
 - Must do assign/project to pass course
- Final Exam

Penn ESE535 Spring2015 -- DeHon

Graduate Class

- · Assume you are here to learn
 - Motivated
 - Mature
 - Not just doing minimal to get by and get a grade
- · Not plug-in-numbers and get solution
- · Things may be underspecified
 - Reason
 - Ask questions
 - State assumptions

Penn ESE535 Spring2015 -- DeHon

43

Materials

- Reading
 - Online
 - · several on canvas
 - Rest on Xplore, ACM DL, web
 - Linked from syllabus page
 - If online, linked to reading page on web;
 I assume you will download/print/read.
 - Possible reference texts (on web)
- · Lecture slides
 - I'll try to link to web page by 10am
 - · you can print

Penn ESE535 Spring2015 -- DeHon

44

Today's Big Ideas

- · Human time limiter
- · Leverage: raise abstraction+fill in details
- Problems complex (human, machine)
- Decomposition necessary evil (?)
- · Implement semantics
 - Exploit freedom to xform to reduce costs
- Dominating effects
- · Problem structure
- Optimal solution depend on cost (objective)

Penn ESE535 Spring2015 -- DeHon

Questions?

Penn ESE535 Spring2015 -- DeHon

46

Administrivia

- Next Lecture W 1/21 (Monday MLK)
 - Reading on canvas
- · Return Info sheets
- Feedback every lecture return@end
- · Web page
 - http://www.seas.upenn.edu/~ese535/
 - Policies on web page
 - READ THIS (you are responsible for knowing)
 - Syllabus linked off page (reading, assign)
 - Note Piazza group

Penn ESE535 Spring2015 -- DeHon

47