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ESE535: 
Electronic Design Automation 

Day 21:  April 13, 2015 
FSM Equivalence Checking 
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Today 

•  Sequential Verification 
– FSM equivalence 
–  Issues 

•  Extracting STG 
•  Valid state reduction 
•  Incomplete Specification 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level 
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 

FSM Equivalence 
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Motivation 

•  Write at two levels 
– Java prototype and VHDL implementation 
– VHDL specification and gate-level 

implementation 
•  Write at high level and synthesize/

optimize 
– Want to verify that synthesis/transforms did 

not introduce an error 

Question 

•  Given a state machine with N states: 
•  How long of an input sequence do I 

need to visit any of the N states? 
–  (i.e. if someone picks a state, 

       how long of an input sequence might 
you need to select a path to that state?) 
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Cornerstone Result 
•  Given two FSM’s, can test their 

equivalence in finite time 
•  N.B.: 

– Can visit all states in a FSM with finite input 
strings 
•  No longer than number of states 
•  Any string longer must have visited some state 

more than once (by pigeon-hole principle) 
•  Cannot distinguish any prefix longer than 

number of states from some shorter prefix which 
eliminates cycle (pumping lemma) 
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FSM Equivalence 

•  Given same sequence of inputs 
– Returns same sequence of outputs 

•  Observation means can reason about 
finite sequence prefixes and extend to 
infinite sequences which FSMs are 
defined over 
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Equivalence 

•  Brute Force: 
– Generate all strings of length |state| 

•   (for larger FSM = the one with the most states) 
– Feed to both FSMs with these strings 
– Observe any differences? 

•  How many such strings? 
–  |Alphabet|states 

Random Testing 

•  What does this say about random 
testing? 

•  P(generate string)=1/|alphabet||states| 

•  P(generate string)=|alphabet|-|states| 

•  P(miss string) = 1-P(generate string) 
•  P(miss string, n tests)=P(miss string)n 

•  P(gen str, n test)=1-(1-|alphabet|-|states|)n 
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Random Testing 

•  Instance of “Coupon Collector” Problem 
–  If there are C unique “Coupons” that can 

be selected uniformly at random 
– How many coupons will a collector need to 

get to have a full set of C? 
•  Need C ln (C) to have a 50% chance of 

a full set 
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Random Testing 
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Random Testing 

•  Random testing 
– Powerful 
– Not an efficient way to guarantee finds all 

behaviors 

•  How can we do better? 
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Smarter 

•  Create composite FSM 
–  Start with both FSMs 
–  Connect common inputs  

together (Feed both FSMs) 
–  XOR together outputs of two  

FSMs  
•  Xor’s will be 1 if they disagree,  

     0 otherwise 
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Smarter 

•  Create composite FSM 
–  Start with both FSMs 
–  Connect common inputs together (Feed both FSMs) 
–  XOR together outputs of two FSMs  

•  Xor’s will be 1 if they disagree, 0 otherwise 

•  Ask if the new machine ever generate a 1 on an 
xor output (signal disagreement) 
–  Any 1 is a proof of non-equivalence 
–  Never produce a 1  equivalent 
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Creating Composite  
FSM 
•  Assume know start state for each FSM 
•  Each state in composite is labeled by  

the pair {S1i, S2j} 
–  How many such states? 
–  Compare to number of strings of length #states? 

•  Start in {S10, S20}  
•  For each symbol a, create a new edge: 

–  T(a,{S10, S20}) {S1i, S2j}  
•  If T1(a, S10) S1i, and T2(a, S20) S2j 

•  Repeat for each composite state reached 
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Composite FSM 

•  How much work? 
   At most |alphabet|*|State1|*|State2| edges 

== work 
•  Can group together original edges 

–  i.e. in each state compute intersections of 
outgoing edges 

– Really at most |E1|*|E2| 

Penn ESE 535 Spring 2015 -- DeHon 
17 

Non-Equivalence 
•  State {S1i, S2j} demonstrates non-

equivalence iff 
–  {S1i, S2j} reachable  
– On some input, State S1i and S2j produce 

different outputs  
•  If S1i and S2j have the  same outputs for 

all composite states, it is impossible to 
distinguish the machines  
– They are equivalent 

•  A reachable state with differing outputs  
–  Implies the machines are not identical 
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Empty Language 

•  Now that we have a composite state 
machine, with this construction 

•  Question: does this composite state 
machine ever produce a 1?   
–  Is there a reachable state that has differing 

outputs? 
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Answering Empty Language 

•  Start at composite start state {S10, S20}  
•  Search for path to a differing state 
•  Use any search (BFS, DFS) 
•  End when find differing state 

– Not equivalent 
•  OR when have explored entire 

reachable graph w/out finding 
– Are equivalent 
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Reachability Search 

•  Worst: explore all edges at most once 
– O(|E|)=O(|E1|*|E2|) 

•  When we know the start states,  
we can combine composition 
construction and search 
–  i.e. only follow edges which fill-in as search 
–  (way described) 

Example 
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s0 

s1 

s2 

-/0 

-/1 

-/1 

q0 

q1 

q3 

q2 -/1 

-/1 
-/0 

1/0 
0/0 
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Creating Composite FSM 
•  Assume know start state for each FSM 
•  Each state in composite is labeled by the pair 

{S1i, S2j} 
•  Start in {S10, S20}  
•  For each symbol a, create a new edge: 

–  T(a,{S10, S20}) {S1i, S2j}  
•  If T1(a, S10) S1i, and T2(a, S20) S2j 

•  Check that both state machines produce same outputs 
on input symbol a 

•  Repeat for each composite state reached 
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Example 

s3 s4 

s0 

s1 s2 

0/0 q0 

q1 q2 

1/0 

0/1 

0/0 

0/0 1/0 
0/1 

1/0 

1/1 1/1 

0/0 1/0 

1/1 0/1 

1/0 0/0 
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Issues to Address 

•  Obtaining State Transition Graph from 
Logic 

•  Incompletely specified FSM? 
•  Know valid (possible) states? 
•  Know start state? 
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Getting STG from Logic 

•  Brute Force 
– For each state 

•  For each input minterm 
– Simulate/compute output 
– Add edges 

– Compute set of states will transition to 
•  Smarter 

– Exploit cube grouping, search pruning 
•  Cover sets of inputs together 

– Coming attraction: PODEM 
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Incomplete State Specification 

•  Add edge for unspecified transition to  
– Single, new, terminal state 

•  Reachability of this state may indicate 
problem 
– Actually, if both transition to this new state 

for same cases 
•  Might say are equivalent 
•  Just need to distinguish one machine in this 

state and other not 
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Valid States 

•  Composite state construction and 
reachability further show what’s 
reachable 

•  So, end up finding set of valid states 
– Not all possible states from state bits 

Start State? 

•  Worst-case: 
– Try verifying for all possible start state pairs 
–  Identify start state pairs that lead to 

equivalence 
•  Candidate start pairs 

•  More likely have one (specification) 
where know start state 
– Only need to test with all possible start 

states for the other FSM 
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Summary 

•  Finite state means 
– Can test with finite input strings 

•  Composition 
– Turn it into a question about a single FSM 

•  Reachability 
– Allows us to use poly-time search on FSM 

to prove equivalence 
•  Or find differentiating input sequence 
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Big Ideas 
•  Equivalence 

–  Same observable behavior 
–  Internal implementation irrelevant  

•  Number/organization of states, encoding of state bits… 

•  Exploit structure 
–  Finite States … necessity of reconvergent paths 
–  Structured Search – group together cubes 
–  Limit to valid/reachable states 

•  Proving invariants vs. empirical verification 
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Admin 

•  Reading for next two lectures on 
blackboard 


