
1

Penn ESE 535 Spring 2015 -- DeHon
1

ESE535:
Electronic Design Automation

Day 21: April 13, 2015
FSM Equivalence Checking

Penn ESE 535 Spring 2015 -- DeHon
2

Today

•  Sequential Verification
– FSM equivalence
–  Issues

•  Extracting STG
•  Valid state reduction
•  Incomplete Specification

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level
Multilevel opt.
Covering
Retiming

Placement
Routing

FSM Equivalence

Penn ESE 535 Spring 2015 -- DeHon
3

Penn ESE 535 Spring 2015 -- DeHon
4

Motivation

•  Write at two levels
– Java prototype and VHDL implementation
– VHDL specification and gate-level

implementation
•  Write at high level and synthesize/

optimize
– Want to verify that synthesis/transforms did

not introduce an error

Question

•  Given a state machine with N states:
•  How long of an input sequence do I

need to visit any of the N states?
–  (i.e. if someone picks a state,

 how long of an input sequence might
you need to select a path to that state?)

Penn ESE 535 Spring 2015 -- DeHon
5

Penn ESE 535 Spring 2015 -- DeHon
6

Cornerstone Result
•  Given two FSM’s, can test their

equivalence in finite time
•  N.B.:

– Can visit all states in a FSM with finite input
strings
•  No longer than number of states
•  Any string longer must have visited some state

more than once (by pigeon-hole principle)
•  Cannot distinguish any prefix longer than

number of states from some shorter prefix which
eliminates cycle (pumping lemma)

2

Penn ESE 535 Spring 2015 -- DeHon
7

FSM Equivalence

•  Given same sequence of inputs
– Returns same sequence of outputs

•  Observation means can reason about
finite sequence prefixes and extend to
infinite sequences which FSMs are
defined over

Penn ESE 535 Spring 2015 -- DeHon
8

Equivalence

•  Brute Force:
– Generate all strings of length |state|

•  (for larger FSM = the one with the most states)
– Feed to both FSMs with these strings
– Observe any differences?

•  How many such strings?
–  |Alphabet|states

Random Testing

•  What does this say about random
testing?

•  P(generate string)=1/|alphabet||states|

•  P(generate string)=|alphabet|-|states|

•  P(miss string) = 1-P(generate string)
•  P(miss string, n tests)=P(miss string)n

•  P(gen str, n test)=1-(1-|alphabet|-|states|)n

Penn ESE 535 Spring 2015 -- DeHon
9

Random Testing

•  Instance of “Coupon Collector” Problem
–  If there are C unique “Coupons” that can

be selected uniformly at random
– How many coupons will a collector need to

get to have a full set of C?
•  Need C ln (C) to have a 50% chance of

a full set

Penn ESE 535 Spring 2015 -- DeHon
10

Random Testing

Penn ESE 535 Spring 2015 -- DeHon
11 [DeHon, LLNSD Chapter, Kluwer 2004]

Random Testing

•  Random testing
– Powerful
– Not an efficient way to guarantee finds all

behaviors

•  How can we do better?

Penn ESE 535 Spring 2015 -- DeHon
12

3

Penn ESE 535 Spring 2015 -- DeHon
13

Smarter

•  Create composite FSM
–  Start with both FSMs
–  Connect common inputs

together (Feed both FSMs)
–  XOR together outputs of two

FSMs
•  Xor’s will be 1 if they disagree,

 0 otherwise

Penn ESE 535 Spring 2015 -- DeHon
14

Smarter

•  Create composite FSM
–  Start with both FSMs
–  Connect common inputs together (Feed both FSMs)
–  XOR together outputs of two FSMs

•  Xor’s will be 1 if they disagree, 0 otherwise

•  Ask if the new machine ever generate a 1 on an
xor output (signal disagreement)
–  Any 1 is a proof of non-equivalence
–  Never produce a 1  equivalent

Penn ESE 535 Spring 2015 -- DeHon
15

Creating Composite
FSM
•  Assume know start state for each FSM
•  Each state in composite is labeled by

the pair {S1i, S2j}
–  How many such states?
–  Compare to number of strings of length #states?

•  Start in {S10, S20}
•  For each symbol a, create a new edge:

–  T(a,{S10, S20}) {S1i, S2j}
•  If T1(a, S10) S1i, and T2(a, S20) S2j

•  Repeat for each composite state reached
Penn ESE 535 Spring 2015 -- DeHon

16

Composite FSM

•  How much work?
 At most |alphabet|*|State1|*|State2| edges

== work
•  Can group together original edges

–  i.e. in each state compute intersections of
outgoing edges

– Really at most |E1|*|E2|

Penn ESE 535 Spring 2015 -- DeHon
17

Non-Equivalence
•  State {S1i, S2j} demonstrates non-

equivalence iff
–  {S1i, S2j} reachable
– On some input, State S1i and S2j produce

different outputs
•  If S1i and S2j have the same outputs for

all composite states, it is impossible to
distinguish the machines
– They are equivalent

•  A reachable state with differing outputs
–  Implies the machines are not identical

Penn ESE 535 Spring 2015 -- DeHon
18

Empty Language

•  Now that we have a composite state
machine, with this construction

•  Question: does this composite state
machine ever produce a 1?
–  Is there a reachable state that has differing

outputs?

4

Penn ESE 535 Spring 2015 -- DeHon
19

Answering Empty Language

•  Start at composite start state {S10, S20}
•  Search for path to a differing state
•  Use any search (BFS, DFS)
•  End when find differing state

– Not equivalent
•  OR when have explored entire

reachable graph w/out finding
– Are equivalent

Penn ESE 535 Spring 2015 -- DeHon
20

Reachability Search

•  Worst: explore all edges at most once
– O(|E|)=O(|E1|*|E2|)

•  When we know the start states,
we can combine composition
construction and search
–  i.e. only follow edges which fill-in as search
–  (way described)

Example

Penn ESE 535 Spring 2015 -- DeHon
21

s0

s1

s2

-/0

-/1

-/1

q0

q1

q3

q2 -/1

-/1
-/0

1/0
0/0

Penn ESE 535 Spring 2015 -- DeHon
22

Creating Composite FSM
•  Assume know start state for each FSM
•  Each state in composite is labeled by the pair

{S1i, S2j}
•  Start in {S10, S20}
•  For each symbol a, create a new edge:

–  T(a,{S10, S20}) {S1i, S2j}
•  If T1(a, S10) S1i, and T2(a, S20) S2j

•  Check that both state machines produce same outputs
on input symbol a

•  Repeat for each composite state reached

Penn ESE 535 Spring 2015 -- DeHon
23

Example

s3 s4

s0

s1 s2

0/0 q0

q1 q2

1/0

0/1

0/0

0/0 1/0
0/1

1/0

1/1 1/1

0/0 1/0

1/1 0/1

1/0 0/0

Penn ESE 535 Spring 2015 -- DeHon
24

Issues to Address

•  Obtaining State Transition Graph from
Logic

•  Incompletely specified FSM?
•  Know valid (possible) states?
•  Know start state?

5

Penn ESE 535 Spring 2015 -- DeHon
25

Getting STG from Logic

•  Brute Force
– For each state

•  For each input minterm
– Simulate/compute output
– Add edges

– Compute set of states will transition to
•  Smarter

– Exploit cube grouping, search pruning
•  Cover sets of inputs together

– Coming attraction: PODEM

Penn ESE 535 Spring 2015 -- DeHon
26

Incomplete State Specification

•  Add edge for unspecified transition to
– Single, new, terminal state

•  Reachability of this state may indicate
problem
– Actually, if both transition to this new state

for same cases
•  Might say are equivalent
•  Just need to distinguish one machine in this

state and other not

Penn ESE 535 Spring 2015 -- DeHon
27

Valid States

•  Composite state construction and
reachability further show what’s
reachable

•  So, end up finding set of valid states
– Not all possible states from state bits

Start State?

•  Worst-case:
– Try verifying for all possible start state pairs
–  Identify start state pairs that lead to

equivalence
•  Candidate start pairs

•  More likely have one (specification)
where know start state
– Only need to test with all possible start

states for the other FSM
Penn ESE 535 Spring 2015 -- DeHon

28

Penn ESE 535 Spring 2015 -- DeHon
29

Summary

•  Finite state means
– Can test with finite input strings

•  Composition
– Turn it into a question about a single FSM

•  Reachability
– Allows us to use poly-time search on FSM

to prove equivalence
•  Or find differentiating input sequence

Penn ESE 535 Spring 2015 -- DeHon
30

Big Ideas
•  Equivalence

–  Same observable behavior
–  Internal implementation irrelevant

•  Number/organization of states, encoding of state bits…

•  Exploit structure
–  Finite States … necessity of reconvergent paths
–  Structured Search – group together cubes
–  Limit to valid/reachable states

•  Proving invariants vs. empirical verification

6

Penn ESE 535 Spring 2015 -- DeHon
31

Admin

•  Reading for next two lectures on
blackboard

